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ABSTRACT

This thesis presents the detailed design and implementation

of the kernel of a real-time, distributed operating system
for a microcomputer based multiprocessor system.

Process oriented structure, segmented address spaces and

a synchronization mechanism based on eventcounts and sequencers

comprise the central concepts around which this operating
system is built.

The operating system is hierarchically structured, layered
in three loop free levels of abstraction and fundamentally
configuration independent. This design permits the logical
distribution of the kernel functions in the address space of
each process and the physical distribution of system code and
data among the microcomputers. This physical distribution in
turn, in a multimicroprocessor configuration will help to
minimize system bus contention.

The system particularly supports applications where
processing is partitioned into a set of multiple interacting
asynchronous processes. One such application is that of
smart sensor image processing for which this system has been
specifically developed. The implementation was developed for
the INTEL 86/12A single-board computer using the 8086

processor chip.
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I. INTRODUCTION

The topic of this thesis is the detailed design and
implementation of the kernel of a real-~-time, distributed

operating system for a multiple microcomputer system.

A. MOTIVATION

In the Electro-Optics Signal Processing Laboratory at
the Naval Postgraduate School, research is currently being
conducted in the area of "smart sensor image processing”.
Specifically image processing for long distance missile
detection, high~altitude surveillance and target acquisition
for tactical missiles is the topic presently being investigated.

The smart sensor platform will require on-board data
processing of large quantities of collected image data.

To provide the required "computing power" for a high
input data rate which processes that data in "real time", a
multiple microcomputer system is being developed capable of
performing concurrent asynchronous computations.

A large image processing program can be partitioned into
small interactive parts. These will be dynamically assigned
to the microcomputers available in the system for concurrent
"parallel"” and "pipeline" processing.

If properly designed and executed, the concurrent computing
will both increase the throughput and decrease the execution
time.
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To facilitate the dynamic assignment of the partitioned
processes of a program for effective computations by a
multiple microcomputer system, a real-time distributed
operating system is needed and this is the topic of the

present thesis.

B. DISCUSSION

The processing power of microprocessors is increasing.

If this power can be effectively coordinated by an opera-
ting system, it would provide a more affordable anc powerful
product.

The application of contemporary microprocessor technology
to the design of large-scale multiple processor systems offers
many potential benefits. For example, the "cost" of high-
power computer systems could be reduced drastically, and
"fault tolerance" in critical real-time systems could be
improved. Designing such systems presents many formidable
problems that have not been solved by the single processor
systems available today.

The multi-microprocessor systems in use today suffer
performance dearadation as more processors are added to the
system. Sophisticated interconnections among processors and
memories are needed to reduce this problem.

Despite the rapidly expanding capabilities of modern
microcomputer systems, they still are limited by the

relatively slow execution speeds of their microprocessors,

17
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for many real-time military applications. These systems

generally do not provide the power and flexibility required

to address complex and demanding applications. One such

area is that of "real-time digital image processing”. This

is a particularly demanding application area, characterized

by the requirement to apply significant "processing power"

to a high input data rate.

An answer to the inadequacies of the single microcomputer

is to provide for miltiple microcomputer systems. Such

systems could provide the processing power necessary to handle

those applications, which are presently addressed by mini-
computers and mainframe systems. However, most of today's

microcomputer operating systems deal only witha single

processor and cannot adequately manage multiple processors.

The integration of large numbers of relatively inexpensive

microcomputers into powerful computer systems has been the
subject of intensive research in universities and industry

for several years.

The primary thrust of this thesis is towards a general

architecture which can be applied to hardware systems, that

are commercially available today (this project is currently

using the INTEL general purpose l16-bit 8086 Microprocessor),

with some custom~developed hardware for intercommunication

network and control.

18
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C. BACKGROUND

The system software design uses the MULTICS [9] concepts
of segmentation and "per process stack", in conjunction with
Reed's [15] design of virtual processors, and Reed and
Kanodia ([10] eventcount synchronization mechanism.

The basic microcomputer operating system design was
developed by O'Connell and Richardson [7] and is based on the
structure of a hierarchical kernel, where security kernel tech-
nology was used. O0'Connell and Richardson first developed a
flexible operating system design that is fundamentally
configuration independent and adaptable to a spectrum of
systems.

J. Wasson [8], in his thesis defined the detailed kernel
design of one member of the above family, a modified real-time
subset, tailored to "real-time image processing" and applied to
the INTEL 16-bit general purpose 8086 Microprocessor.

The objective of this thesis is to complete the above
design and also to write a detailed code implementation.

The result is a layered loop free operating system which
is both small and easy to analyze.

The system supports miltiple asynchronous processes, using
the concept of "two-level traffic control”, to accomplish
"processor multiplexing” amongst a greater number of
eligible processes. This dual-level "processor multiplexing"

design allows the system to treat the two primary scheduling
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decisions, viz., the scheduling of processes and the manage-
ment of processors, at two separate levels of abstraction.

The kernel comprises a complete, albeit primitive,
operating system providing support for a large number of
asynchronous processes.

The kernel manages all physical processor resources, and
provides scheduling and interprocess communicatioh and
synchronization and also provides the user with an execution
environment which is relatively free from concern about the
underlying hardware configuration. The system is capable of
performing in a real-~time environment through the use of
"preemptive scheduling", to ensure expeditious handling of

time-critical processing requirements.

D. STRUCTURE OF THE THESIS

Chapter I presented a general discussion and the thesis'
background.

Chapter II, describes the overall design philosophy of
the operating system, its functional requirements, how
multiple processes communicate and synchronize their tasks,
and finally how these processes .re multiplexed on a smaller
set of processors.

Chapter III describes the hardware architecture of the
multiprocessor system. The INTEL 8086 Microprocessor was
chosen for this implementation.

Chapter 1V describes the details of the system design.
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Chapter V presents conclusions and observations that
resulted from this effort and also suggestions for further

research.
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II. FUNDAMENTAL DESIGN CONCEPTS

A. DESIGN PHILOSOPHY

The kernel primitives which provide multiprogramming
processor management and process management, form one member
of the family of operating systems designed by 0'Connell and
Richardson [7]. This member is a modified real-time subset.
The modification consists of the inclusion of a more general
synchronization mechanism, eventcounts and sequencers describ-
ed by Reed and Kanodia [10], which replace the more tradi-
tional Signal/Wait and Block/Wakeup used in the original
design.

Before presenting the details of this operating system,
the high level design and the detailed "working implementa-
tion” of the system, it is useful to investigate the general
design methodology applied to the development of this
operating system.

Multiple processor systems are intrinsically more complex
than the familiar uniprocessor. Their complexity has proven
to be the major barrier to realize the full potential of
the inherent parallelism available in such a system.

One of the most important components of any computer
system is the operating system. The operating system manages
the system's resources. Thus system performance is critically

dependent upon its effectiveness.
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We can say that basically two issues confront the operat-
ing system designer. First, he must provide system functions
that support the services requested by the user. These
functional requirements affect the logical design of the
system. Second, he must address issues of cost and
performance. Cost and other management considerations will
not be addressed here. Performance issues concern the
management of physical resources and has to do with the
computational speed, and also system attributes such as the
ease of prograﬁming, efficiency, correct operation, etc.

There is a considerable amount of literature devoted to
the development of the functional design of operating systems.
Dijkstra [12] has described a technique for reducing the
complexity of the design by allocating operating system
activities to a number of cooperating processes. Process
structure is simplified in turn, by defining its functions
in levels of increasing abstraction, and by applying the
principles of structured programming.

Madnick and Donovan [13] have described an operating
system as a hierarchical extended machine. Program modules
are added to the system to provide many extended instructions,
in addition to the hardware instructions available on the
bare machine. In complex systems, one extended machine may
be constructed upon another to form a system composed of
levels of abstraction (virtual machines). Figure 1 from

Reference [13], presents the general idea of that hierarchical
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extended machine and levels of abstraction built on the
bare machine.

Saltzer [14] and Reed [10, 15] have discussed the advan-
tages of resource virtualization and have described useful
interprocess communication and synchronization mechanisms.
The general design strategies presented in this thesis
will aid the operating system designer in developing system
functions in a clean, logical, verifiable design.

Finally, adequate performance can only be assured if
the behavior of the system is well understood and this in
turn imposes a strict requirement for simplicity.

In this design, the requirement for simplicity is
satisfied by utilizing a model based on the notion of
multiple asychronous processes with segmented address spaces.
This is the central unifying concept which provides a
straightforward view of both static and dynamic system
behavior (4]. The principles of structured system design
are also applied to logically organize the operating system
into a hierarchically structured set of easily understood
modules whose interactions are clearly specified and strictly
enforced.

The result is a modular, layered operating system which
makes it easier to ensure correct operation and provides
better opportunity for improving performance through tuning.

Finally, because the system is small, less memory is used for

25

\o-!uw‘if,s-mf P e MPTIML degte m el v s et e L e,

—_




operating system code and less processor time is spent in
. its execution.

The operating system design is logically organized into
a hierarchy that separates the user application processes
from the kernel. This modular, layered design lends itself
to "dynamic reconfiguration" where processes can be relocated
among physical processors [19]. Additionally, the system
initialization technique proposed by Anderson [19] provides a
basis for an automatic recovery mechanism that will initialize
the system on a new physical configuration after the detect-

ion of faulty system components.

B. FUNCTIONAL REQUIREMENTS

The functional requirements defined below support the
specific design goals of the system and provide features
desirable in any operating system, such as: a logical struct-
ure, fault tolerance and efficiency of operation. Functional
requirements define services that must be provided to support
the user's environment.

1. Process structure

By dividing a job into asynchronous parts and execut-
ing these parts as separate entities, significant benefits
can be realized. Within a single processor system the
partitioning into asynchronous parts provides the "only"
design simplicity. But in a multi-processor system, the

partitioning into asynchronous parts is essential, if the
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"parallel and pipeline processing” potential of the system
is going to be used.

2. Definition of a process. Process orcanization

The abstract idea of a process has been defined
in several ways. A simple one offered by J. Saltzer is
the following:

"a process is a program in execution on a
processor." [14]

A process is the sequence of actions taken by some
processor. In other words, it can be viewed as the past,
present ad future "history" of the state of the processor.
The notion of a process provides a complete description of
all instructions executed and all memory locations referenced
during the performance of a task.

Considering the above definition, it becomes clear
that there are two elements which together completely
characterize and define a given process. These are the
process' "address space” and the "execution point."

The address space is the set of memory locations that
could be accessed during process execution. The execution
point is the state of the processor at a given instant
during process execution (and is characterized by the contents
of certain processor registers).

In the abstract view, an address space is defined by
a collection of discrete points, each representing a memory

word. The process is described by the path traced through
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this address space from process creation to its destruction.
In Figure 2 the main path, shown by a heavy black line,
traces the process execution point as it moves from one
instruction (i.e., memory word) to another during process
execution. The branches from this execution point path
represent data references.

The concept of a process has proven to be a funda-
mental and powerful one in the organization of computer
systems. By designing a system as a collection of coopera-
ting processes, system complexity can be greatly reduced.
This is because the asynchronous nature of the system can be
structured logically by representing each independent
sequential task as a process and by providing interprocess
synchronization and communication mechanisms to prevent

"race" and "deadlock" situations during process interactions.

PROCESS

CREATION

PROCESS
DESTRUCTION

—

FIGURE 2. PROCESS HISTORY
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Several advantages result from using this process
oriented design. As a tool for dealing with the asynchronous
nature of system operation, processes provide a simple,
logical, high-level structure for the design. Since each
process is confined to a specific address space, tasks are
isolated from one another and system fault tolerance can be

improved.

Each process is assigned a unique identifier and is
an explicit entity that requires management.

In a "distributed" operating system, those portions
of the operating system that are logically part of the
sequential flow of control (viz., locus of execution) are
within the address space of each user process. This is made
possible by dividing the operating system into procedures
that are called like any other application procedure.

It should be noted that in a distributed operating
system there is no "master" assigning processes to processors.
Rather, each running process "gives up" its processor to the
next process that is ready to run.

The address space of a process we can say, provides
a container for the process which isolates it from any
other process. This eliminates the possibility of inter-
process interference simply because processes are unable

to "escape"” the confines of their defined address spaces. )
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However, this is rather restrictive in that processes
which are totally ignorant of each other have no hope of
co-operating towards the accomplishment of some greater goal.
In order to mediate this constraint, one desires to allow
some restricted (controlled) form of address space overlap,
(viz., sharing), such that co-operation is allowed while
still retaining the benefits of protection offered by
isolation. Sharing requires some way of distinguishing the
shared portions of the address space. This is greatly
facilitated by introducing the notion of memory segmentation.

Finally, to distinguish between a process and a
processor (physical or virtual), we can say that the major
difference is that a processor is an "actor", while a process
is a sequence of "actions" taken by that actor. A process
results from the actions of a processor.

3. Virtual Memory and Segmentation

In many memory handling schemes, processes cannot run
unless the entire address space is loaded in primary memory.
This may require a large main memory or it may restrict the
size of the address space. An alternative plan requires an
operating system which manages primary and secondary memory
to create the "illusion" of a memory which is larger than
system's primary memory. Since the larger memory is only
an illusion,it is often called "virtual" storage.

Virtual memory is used to implement the concept of a
"per process" address space. In Multics ([16] each process is
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provided with its own virtual memory for an address space.
These virtual memories are completely independent of one
another.

A virtual memory (the address space of a process) is
composed of a set of segments. A segment is a logical col-
lection of information (e.g., procedure, data structure,
file, etc.) and is the basic logical object of this design.
Segments are distinct "variable size" memory objects contain-
ing a sequence of words with conventional linear addresses.
Associated with a segment is a set of logical attributes
used to uniquely identify the segment and to control access
to it.

In specifying the set of segments that comprise a
virtual memory, one may include segments that are also
part of "other" virtual memories as well. So in addition,
segmentation supports "information snaring" since a segment
may belong to more than one address space. Segmentation
provides a means of associating logical attributes and labels
with each segment, such as, access class, domain, etc. Thus,
segments can be shared in a controlled manner to provide for
inter-process communication and synchronization.

By using segmentation to provide a virtual memory
environment, the user is presented with a configuration
independent system in that he "sees" a process address space
that he can consider "his own" and is not dependent on the

assignment of physical addresses.
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a. Addressing in a Segmented System

' Addressing in a segmented memory system 1is
"two-dimensional", That is, a complete address consists of
two parts. The first is the "segment number", This identi-
fies the particular segment of interest. One attribute of
the segment is the physical address of the segment's base.
Thus the segment can be located anywhere in physical memory
just by changing this base address. The second dimension
of the address is an "offset" relative to the segment's base
{the beginning of the segment). This serves to access
specific locations within the segment.

This two-dimensional addressing "frees"” informa-
tion from dependence on a particular memory location by
making it arbitrarily "relocatable",

Figure 3 illustrates the two-dimensional nature
of the segment address. The descriptor segment provides a
list of descriptors for all segments in a process address
space. As previously mentioned, one attribute of the segment,
given by the segment descriptor, is the "physical" address
of the segment's base. Then the second dimension needed to

access a specific memory word within this segment is given
( 1st dimension, 2nd dimension). So, in segmented addressing,

each address is characterized by an ordered pair of numbers

({l1st dimension, 2nd dimension).
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Because of the similarities in address mapping
hardware, very often the distinction between paging and
segmentation is confused. To distinguish between page and
segment, we emphasize the conceptual differences here. The
major difference is that a segment is a "logical" unit of
information "visible"” to the user's program and is of
"arbitrary size", A page is a "physical" unit of information
strictly used for memory management "invisible" to the user's
program and is of a "fixed size"”, In this design only segmen-
tation is supported by both the hardware and software.

Segmented memory management can offer several
advantages. It can: control fragmentation; facilitate shared
segments (data areas and procedures); and also for future

development in this system can provide dynamic linking and

DESCRIPTOR
__SEGMENT , 4 _SEGMENT #2
[ E— T | ¢—— SEGMENT'S

’__—

—— |
SEG #2 —_— MEMORY WORD

FIGURE 3. SEGMENTED ADDRESSING
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loading, controlled access, dynamically growing and shrinking
segments. More details about segmentation in the present
design will be discussed in the next chapter.

4. Abstraction - Abstract types

"Abstraction" provides a method for reducing problem
complexity by applying a general solution to a collection
of specific cases [17). Structured programming provides a
tool for creating abstraction in software design.

An "abstract type" is a class of objects in the
system, for which there is a defined set of operations.
The difference between an abstract type and the "classic"
notion of type, is that the user of an abstract type need
not know the representation of the object or the algorithms
used to implement operations defined on the type, and
furthermore, the only operations allowed to be performed
on the object are specified by the definition of the type.

The concept of abstract type is quite attractive for
the structuring of large systems. The result is the kind of
structuring prescribed by Parnas' "information hiding
principle” [20], for decomposing a system into modules.
Further, abstract types fit naturally into the structure of
an operating system since a major task of an operating system
is to multiplex a set of physical resources to produce a set
cf virtual resources that can be viewed as objects of abstract
type. For example, this is exactly what happens in processor

multiplexing (see paragraph C).
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An abstract type consists of a set of objects and a
set of operations. For example, a word in virtual memory
1s an abstract type. Two operations that can be carried out
by instructions in user processes are read-word, which
obtains the content of a word named by a particular virtual
memory address, and write-word, which takes a bit string and
stores it in the object specified by a particular virtual
memory address. Processors, both real and virtual, also can
be viewed as objects of abstract type.

The abstract type idea clearly furnishes a useful
way to view the virtual objects seen at an operating system,
but for the design of an operating system the abstract idea
is equally important in structuring the internal implementa-
tion of the systemn.

By strictly applying two special rules in addition
to the general principles of structured programming, a
structure consisting of levels of increasing abstraction can
be constructured.

First, calls cannot be made outward toward higher
levels of abstraction. This frees lower levels from a
dependence on higher levels by creating a loop-free structure
and results in a design which is capable of having subsets.

Second, calls to lower levels must be made through
specific entry points or gates. Each level of abstraction
creates a virtual (hierarchical) machine [13]. The gate to

each level provides a set of instructions created for that
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virtual machine. Thus, higher levels may use the resources
of lower levels only by applying the instruction set of a
lower level machine. Once a level of abstraction has been
created, the details of its implementation are no longer an
issue. Instead users see layers of virtual machines, each
defined by its extended instruction set.

For this particular design when the rules of
abstraction are applied to level @, the physical resources
of the system, these resources are "virtualized". Thus
the first level of abstraction creates "virtual processors",
"yvirtual memory", and "virtual devices" from the system®s
hardware. At each higher level the detail of the design
is reduced. The gate at the boundary between the highest
level of the kernel and the lowest level of the supervisor
provides a mechanism for isolating the kernel as well as
ensuring that each memory access is via kernel software.
This mechanism has been implemented in the system by a ring-
crossing mechanism called the Gatekeeper (or Gate).

5. Protection Domains - Levels of Abstraction

a. Protection Domains
The implementation of this operating system has
not considered the "internal security" of the system but in
the design there are all the ingredients for future extensions
in this direction.
An essential requirement [22] of internal security

is that the security kernel be isolated from other elements
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of the system. This can be accomplished by the construction
of protection domains. Protection domains are used to
arrange process address spaces into rings of different
privilege. This arrangement is a hierarchical structure
in which the most priviledged domain is the innermost ring.
The structure essentially divides the address space into
levels of abstraction with strictly enforced gates at the
ring boundaries (Figure 4).

The protection provided by the ring structure
is not a security policy (security protection is implemented
by a lattice structure). It is, however, a méchanism to
enforce the hierarchy of the virtual machine by creating a

priviledged kernel ring within the supervisor ring.

GATEKEEPER

SUPERVISOR

BASE
MACHINE

FIGURE 4. PROTECTION RINGS
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In this implementation to protect kernel proced-
ures from the user, the process' address space is divided
into two hierarchical domains, "user domain" and "kernel
domain”. The kernel domain is the most priviledged. Only

the kernel executes in this domain. The user domain is less

priviledged and is separated from the kernel domain to protect

the user from inadvertently causing problems to the operating
system services. These two domains are generated by software
since there is no hardware support.

b. Levels of Abstraction

Abstraction is a way of avoiding complexity and
a tool by which a finite piece of reasoning can cover a
myriad of cases [17]. The purpose of abstracting is not to
be vague, but to create a semantic level in which one can be
absolutely precise.

Levels of abstraction have been demonstrated to
be a powerful design methodology for complex systems. The
use of levels of abstraction in general leads to a better
design, with greater clarity and fewer errors.

A level is defined not only by the abstraction
that it supports (for example, a segmented virtual memory)
but also by the resources employed to realize that
abstraction. Lower levels (closer to the hardware) are

’
not aware of the abstractions, or resources of lower levels

only by appealing to the functions of the lower levels. This

pair of restrictions reduces the number of interactions among

parts of a system and makes them more explicit.
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Each level of abstraction creates a virtual
‘ machine environment. Programs above some level do not need

to know how the virtual machine of that level is implemented.
For example, if a level of abstraction creates sequential
processes, and multiplexes one or more hardware processors
among them, then at higher levels the number of physical
processors in ‘the system is not important. This way, in
present implementation, since the processes are assigned
virtual progcessors (and not physical), there is no effect
on the uéer when real processors are added or deleted
(except, of course, for the change in performance). Adding
and deleting processors will have particular interest when
"fault tolerance" and "fault correction” are added to the
attributes of the operating system.

On the present implementation, the operating
system is structured as a hierarchy cf the levels of abstrac-

tion shown in Figure 5.

C. PROCESSOR MULTIPLEXING

1. Definition of a Processor

The basic function of a processor is to perform a
sequence of operations on objects in its environment. The
environment of a processor is a set of objects. For example,
the environment of a physical processor is that portion of
memory that it can access through its address mapping hard-

ware. Typically the environment is specified by an object
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such as the "descriptor segment" (in MULTICS) which in turn
names another object.

A processor has internal memory, called its state,
that it uses to pass information from one operation to the
next. The processor determines the next operation to perform
by interpreting an instruction found in the processor's
environment by an instruction pointer that is part of the
processor state. Also included in the processor state is
the name of the current domain in which the processor is
executing.

Each operation performed may modify the contents

of the processor's internal memory. In particular, it changes
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the instruction pointer to select the next instruction to
be interpreted.

As an object of abstract type, a processor may be
part of the environment of other processors. The operations
that can be performed on a processor object are: loading
a new state into the processor, extracting the current state
from the processor, causing the processor to run, causing
the processor to stop, etc.

A processor can be a physical object such as the
INTEL 8086, l16-bit general~purpose microprocessor used to
implement this design. 1In this case, the processor registers
comprise the state of the processor. The environment of the
processor includes all of the primary memory that is acces-
sible through the processor's descriptor segment. The
descriptor segment in this design is related to the four
hardware segment registers (CS, DS, SS and ES). Details
are discussed in the next chapter.

On the other hand, a virtual processor which has
no direct hardware manifestation, is a simulation of a
physical processor achieved by using physical processors
to interpret the instructions to be executed by the virtual
processor. The virtual processor idea is discussed in the
following paragraph 3.

2. Definition of Processor Multiplexing

Multiplexing can be defined as the use of a single

resource for different purposes at different times. For
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example, the physical bus lines can be used both for addresses

and data during different times of a machine cycle.

Processor multiplexing is a technique for sharing
scarce processor resources among a number of processes. The
ability to multiplex processors efficiently provides a
mechanism for the virtualization of these physical processors
by simulating the existence of a larger number of virtual
processors. This technique is widely used in conventional
uniprocessor systems where it is called multiprogramming. It
seeks to maximize the use of the available hardware by auto-
mating control of process loading and execution. It also
greatly increases the flexibility of a system allowing it
to be effective in more complex and demanding applications.

J. H. Saltzer [14] presented one of the fundamental
works on the subject of processor multiplexing.

3. Processor Virtualization

The first levels of abstraction, above system hard-
ware, creates virtual representations of physical resources
(virtual processors, virtual memory). Since upper levels of
the design operate on these virtual processors rather than
on physical processors, most of the design (i.e., everything
above virtualization level) is independent of the physical
configuration of the system. This means that by providing
the virtual to real processor binding in the kernel of the
operating system and since the processes are assigned virtual

processors (and not real processors), there is no effect
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on the user when real processors are added or deleted in the
system (except, of course, for the change in performance).

The physical processor resources (those hardware
devices that execute machine instructions) are virtualized
by creating abstract processors called virtual processors.

Processor multiplexing can be defined alsoc as a
simulation of a number of distinct virtual processors by a
smaller number of real processors.

a. Virtual Processors

A virtual processor is a data structure that
contains a complete description of a process in execution on
a physical processor, at a given instant. This description
is contained in the process execution point. The address
space of the process must be accessible to the virtual
processor when it is "loaded"” on ("bound” to) a CPU. To
provide a useful virtualization capability, the CPU must
have the ability to efficiently multiplex process execution
points and address spaces (i.e., it must support
multiprogramming).
Virtual processors are simulations of processors.

They can be viewed in essentially the same way as physical
processors, in that they execute the same instructions.
However, the instruction set of a virtual processor has been
expanded to include some instructions which the physical
processors do not directly have. These include "instructions"

to "load" a process, certain operation called interprocess

43




R

- -

communication and synchronization primitives, system service
calls, etc.

For example, the AWAIT operation is not an
operation that requires real processor resources, it is
rather an operation that inhibits use of real processor
resources by the virtual processor.

Virtual processors exist only as "abstract”
processors represented by a data structure. They are used
as the vehicle for the control and manipulation of processcr
rescurces.

Each of the virtual processors executes a sequence
of operations in time. These sequences are actually
performed by the real processors. Successive operations of
the same virtual processor may be separated by a gap of
time, during which operations of another virtual processor
are being executed by the real processors, Figure 6 shows
how the operations of three virtual processors might be

mapped into the operation sequence of one real processor

Real Processor #1

time
—
Virtual Processor #1 |
] { ]
| | i I
' 1 i t
[} §
| ! | —
Processor #2 ) { I
| i i
t | l
Virtual Processor #X . l————

FIGURE 6. MULTIPLEXING A REAL PROCESSOR
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To define a term used frequently in this thesis,
a virtual processor being simulated by a real processor is
"bound" to that real processor whenever its process is
being executed by the real processor. Thus, Virtual Proces-
sor #2 in Figure 6 is bound to Real Processor #1 during the
first time interval.

Processor multiplexing also requires a policy of
scheduling. Given a number of wirtual processors to which a
real processor may be bound at any one time, the real
processor can execute only one virtual processor. The
choice of the processor to run is made by some algorithm
called virtual processor scheduler. This algorithm receives
as input the set of virtual processors belonging to this
real processor and chooses which one is to run (be bound and
execute) . .

4. Multiprogramming

Multiprogramming is used to improve system efficiency

and to create a virtual environment which frees the remainder

of the operating system from a dependence on the phvsical
processor configuration. Processor management provides a
means of coordinating the interaction of the asynchronous
processes which comprise the system. This implementation
employs a processor multiplexing technique for a distributed
kernel and provides a virtual interrupt mechanism. The
modular hierarchical structure of the software is "loop-free"

to support future system expansion to higher level functions.
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The clean, logical, process-oriented structure of the
system offers other benefits as well, including possible
inclusion of rfault tolerance, resource configuration

independence, and efficiency.

In a system where there are more processes than o
processors, there must exist a means 2f switching processors
from process to process. For example, reasons for switching
processes are: current process completes, current process

is blocked, a higher priority process is ready to run, etc.
Whatever the reason for switching, there are certain

tasks that must be done in performing the switch. First,

save the address space and current execution point of the

old process. Secondly, load the address space and the

execution point of the new process.

5. Multiprocessing

The process structure provides the essentials for
parallel processing. That is the support for a set of
asynchronous processes which can communicate with each other.
Parallel processing does not require a multiprocessor
environment. However, in a multiprocessor environment,

parallel processing can provide faster completion of a job.

Whenever a job depends on a mixture of asynchronous
and synchronous tasks and time is a factor, then concurrent
processing is a possible solution to get the job done in J
the specified amount of time. Using several processors
working on the same job and each of them doing separate tasks,
the overall time required to to this job can be reduced (job

has been structured into explicit processes).
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The above discussioa provides some of the major
reasons why this system was designed to support parallel
processing on multiple processors.

6. Two-Level Processor Multiplexing

In this design there are two levels of processor
multiplexing. The design in two levels arose from the
existence of multiple physical processors. Each of the
levels addresses a distinct requirement. One level supports
virtual processor management, that is, the provision of
inter-process communication and synchronization. The
other supports the management of physical resources by the
operating system. The first one addresses the multiplexing
of virtual processors aﬁong processes and is the "Traffic
Controller". The other addresses the multiplexing of
physical processors among virtual processors and is the
"Inner Traffic Controller".

a. The Traffic Controller

The Traffic Controller represents the upper

level of processor multipléxing (Level 2) and provides the

mechanism for multiplexing virtual processors among processes.

Thus it is responsible for inter-process synchronization and
communication.

As an example, consider that a Process A wishes
to synchronize its actions with another Process, B, such
that Process B has to complete some task before A can

continue execution. Thus A will execute to the point where
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it cannot proceed further and then wishes to signal B.
When Process B has finished that task it must notify Process
A of its completion so that Process A may then proceed.

This inter-process synchronization and communica-
tion is handled at the level of the Traffic Controller. 1In
the above example, when Process A discovered that it could
not proceed further, it "gave away" its virtual processor to
another process that could be run. 1In this way the Traffic
Controller suspended the exeqution of Process A and a new
process was bound to its virtual processor. In the same
way, when B completes (viz., it has no more work to perform)
it will also give its virtual processor away.

b. The Inner Traffic Controller

The Inner Traffic Controller comprises the
lower level of processor multiplexing (Level 1) and provides
the second set of multiplexing functions. It multiplexes
physical processors among a fixed set of virtual processors.
In particular, the system's interrupt structure is managed
by the Inner Traffic Controller.

If a user process calls upon some system service,
such as disk I/0 or I/0 for a real-time sensor, it must wait
for that service to be completed before it can proceed. The
performance of a system service is considered to be part of
the requesting processes. However, the service may actually
be supported by another virtual processor. To control this

interaction, the Inner Traffic Controller provides the
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required inter-virtual processor synchronization and communi-
cation mechanism. In particular, a physical system interrupt
1s directly transformed into a synchronization signal to a
w1121ng virtual processor. This structure is particularly
.=pcertant “or the support of real-time processing, and note

- at . (s completely distinct from inter-process synchroni-
4. © i cemmunication described in paragraph 6a.

rocessor Multiplexing Strategy

1. Process State Transitions

Figure 7 illustrates the state transitions of
1 set >f processes as a virtual processor is multiplexed
among them. Some eligible process (one which is in the ready
state} 1s scheduled to run and is "bound" to the virtual
processor. At this time, the process makes the transition
tc the running state. As far as the process is concerned,
once it enters the running state, it is executing.

At some point in its execution, the process may
desire to block itself or signal another process. (For
example, when Process A is at that execution point and needs
data computed by another Process, B.) In that case, it will
block itself (will enter the blocked state) and will "give
up" the virtual processor to which it is presently bound and
will be out of "contention" for processor resources. It will
remain in the blocked state until some other process will
signal it. (In the above example, when Process B has computed

the needed data for Process A.) Then this process will make
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(and effect of preemptive scheduling).

PROCESS STATE TRANSITIONS
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the transition back to the ready state. If the process
signals other processes, it will make a transition from the
running state back to the ready state from which it may be
scheduled to run again. In doing so, it allows the Traffic
Controller to possibly give the virtual processor to some
other higher priority process which may be ready to run.

The mechanisms which decide and permit these
transitions are the Traffic Controller Scheduler and the
Traffic Controller inter-process synchronization and communi-
cation primitives AWAIT,'ADVANCE. Their details will be
discussed in Chapter IV.

b. Virtual Processor State Transitions

Figure 8 illustrates the state transitions made
by the virtual processors as a physical processor is
multiplexed. This diagram is very similar to that of Figure
7. However, these transitions are not directly observable
by processes except in the differences of their execution
times, as virtual processor state transitions result from
the management of physical resources by the operating
system.

A running virtual processor can make a transition
to the waiting state or to the ready state. The transition to
the waiting state occurs when a virtual processor must wait
for the completion of some system service (analogous to the
blocking of Process A in the example given in paragraph a).

The transition from running state back to ready state occurs

51

Tt OIS o Wl ~owywe o i -




|

! READY WAITING

‘ VIRTUAL « 3 VIRTUAL

{ PROCESSORS PROCESSOR
1

|

L

RUNNING } /
VIRTUAL |/
PROCESS ORS

‘

1
-4

STATES: READY, RUNNING, WAITING

| TRANSITION 1:

TRANSITION 2:

TRANSITION 3:

TRANSITION 4:

Decided by the Inner Traffic Controller
scheduler.

After an Inner Traffic Controller AWAIT
operation.

After an Inner Traffic Controller ADVANCE
operation.

After an Inner Traffic Controller ADVANCE
operation.

FIGURE 8. VIRTUAL 'PROCESSOR STATE TRANSITIONS

52




-4

when the running virtual processor signals other virtual
processors. It will allow the Inner Traffic Controller to
possibly run another higher priority virtual processor.
While in the waiting state, the virtual processor is out of
"contention" for processor resources until another virtual

processor signals it to continue. While in the ready state,

the virtual processor is in contention for processor resources

and so may be scheduled to run on the physical processor.
The mechanisms which decide and permit these

transitions are the Inner Traffic Controller scheduler and

the Inner Traffic Controller inter-virtual processor synchro-

nization and communication primitives AWAIT, ADVANCE. Their

details will be discussed in Chapter 1IV.

D. COMMUNICATION AND SYNCHRONIZATION

For concurrent processing, a job thut is composed of
sequential and non-sequential tasks is explicitly divided
into an appropriate structure of processes that can run
concurrently. Inter-process communication and synchroniza-
tion are necessary for concurrent processing.

It is the responsibility of the operating system to
provide mechanisms for communication between cooperating
processes. There are two different kinds of communication
that processes must be able to achieve.

There must exist a way for processes to exchange data
in some way. This mode of communication is called inter-

process communication.
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There must also exist a way for processes to wait for
data prepared by other processes, and for processes that
prepare such data, to signal that this data is available.

This interaction is different than communication of data,
and is called inter-process synchronization. Together these
two modes are called inter-process communication and
synchronization.

The actual coordination for the exchange of data between
processes is realized by the use of "shared writable" segments.

Therefore, to utilize the parallelism and pipelining
afforded by multiple processors, a mechanism is required for
inter-process communication and synchronization. It is used
for controlling the execution of processes and coordinating
the sharing of data.

The most widely used synchronization primitives are
Dijkstra's semaphores [l1ll] or Saltzer's Block and Wakeup [14]
that were used in 0O'Connell and Richardson's original
design [7]. However, the design decision was made to use
a different mechanism which provides automatic "broadcasting",
supports "parallel signalling"” and addresses the questions of
"confinement" (or * property) in a secure system. This is the
synchronization mechanism based on the design of eventcounts
and sequencers of Reed and Kanodia [10].

The synchronization between processes is supported by
the AWAIT and ADVANCE, that are the kernel calls to the

Traffic Controller level. The Traffic Controller is the
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kernel module that manages processes and supports scheduling
for user processes by multiplexing the user processes into
a limited (fixed) number of virtual processors.

AWAIT and ADVANCE are primitives of the Traffic
Controller. These primitives can be used to provide simple
cooperation, such as mutual exclusion or complex inter-
actions, when required by the application. How the user's
procedures invoke the AWAIT and ADVANCE primitives depends,
of course, on the actual process structure. (Examples will
be given in Appendix A).

A process can only block itself (using AWAIT) and cannot
block another process. The AWAIT sets the "calling process”
that invoked AWAIT in the blocked or ready state and then
the Traffic Controller Scheduler schedules another ready
process to run, the highest priority ready process.

The ADVANCE is used to provide asynchronous processes
with a synchronization signal. The ADVANCE takes as parameter
the name of the associated eventcount. It advances the value
of that eventcount by one. This incrementation of the even-
count value is "broadcast" to all the processes waiting for
that event. Then a check is made to determine if the awaited
eventcount value (for the processes waiting that event) is
smaller or equal to the current value of the eventcount. If
this is the case, then these previously blocked processes
will awake and resume the ready state. Otherwise they will

remain blocked. Then a check is made to find out if the
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currently running process is of lower priority than the other
ready processes (after ADVANCE operation). 1If that is

the case, the ADVANCE will send to the virtual processor
(which is running this lower priority process) a "pre-empt
interrupt”. Finally the scheduler will select the highest
priority ready process to run. So, we see that the ADVANCE
is also responsible for operating the "pre-emption
mechanism".

The above describes roughly the idea of AWAIT and
ADVANCE primitives, which are very close to the BLOCK and
WAKEUP described in 0'Connell and Richardson's thesis [7].
More details and the whole operation of eventcounting will
be discussed in Chapter 1IV.

Another system level concerned with synchronization is
the Inner Traffic Controller. This level manages the physical
(real) processors to create the virtual processors, that are
in turn managed by the Traffic Controller.

The Inner Traffic Controller provides the interface and
does the multiplexing among the physical (real) and virtual
processors. Each physical processor has associated with it
several (a fixed number) of virtual processors. Some of
these virtual processors are mutliplexed in turn by the
Traffic Controller among user processes. Each system process
is assigned (dedicated to) a virtual processor. In the current
implementation there are two such processes, and these will

be discussed in Chapter 1IV.
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The Inner Traffic Controller decides which virtual
processor will run on the physical processor, based on the
priority assigned to each virtual processor. Of course
from the number of virtual processors assigned to a real
processor only one can run on it at a time. The primitives
ITCSAWAIT (Inner Traffic Controller AWAIT) and ITCSADVANCE
(Inner Traffic Controller ADVANCE) are used to provide
communication and synchronization among the virtual
processors. These primitives are very similar in form
and function to the AWAIT and ADVANCE of the Traffic

Controller.
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III. MULTIPROCESSOR ARCHITECTURE

The manifestation of an operating system design is, of
course, software in execution on a system of equipment. If
the equipment must be selected early in the design, care
must be taken to insure that the overall system design goals
are compatible with the actual hardware capabilities. On the
other hand, if specific design goals must be met, then actual
hardware selection could be made late in the design process.
Then, even if a hardware change must be made, the penalty for
correcting it will be small, since only the lowest level of
the design (where resources are virtualized), need be changed.

The particular hardware selected for this implementation,

is based on the INTEL 86/12A single board microcomputer ([2].

A. HARDWARE REQUIREMENTS

One of the principal design goals of the system design
is to provide for configuration independence. That is when
real processors are added or deleted the system will continue
to function except of course for some change in performance.
Therefore, the operating system imposes only a few constraints
on the hardware, that are noted below:

1. Shared Global Memory

The operating system maintains, "system-wide control

data" accessible to each of the processors via "shared"
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segments. The communication path utilized for sharing this
data is shared memory. Thus some shared memory must be made
available to each microcomputer in such a way as to allow
independent access at the level of single memory references.
(a very small part, of a separate memory board (MUPRO)} is used
as shared global memory, in this system implementation).

2. Multiprocessor Synchronization Support

There must also exist some "hardware-supported multi-
processor synchronization primitive". This can be any form
of an indivisible read-alter-rewrite memory reference., This
capability is required, to implement the global locks on
shared data to prevent race conditions, as the physical pro-
cessors attempt to asynchronously manipulate shared data.
For better understanding of this and the previous paragraph,
consider the following cases of APT and VPM. Two of the
system-wide data control tables are the VPM (Virtual Processor
Mapping) and the APT (Active Process Table), as shown in
Figure 9. VPM is the principal central data base for the Inner
Traffic Controller which contains entries for all of the
virtual processors in the system. Each entry (there is one
"per virtual processor") has several fields, such as the
virtual processor state, priority, etc., which will be
described in Chapter 1IV.

Making this table globally available facilitates

communication among virtual processors at the Inner Traffic
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Controller level, on a "system-wide" scale, since every
virtual processor can access this table.

But to prevent race conditions, and also to assure
that only one processor, at a time, accesses the VPM, as the
physical processors attempt to asynchronously manipulate
shared data, we see the need of a global lock for VPM table.
So in the implementation (coding), every time the VPM is
accessed either to read data or to write, e.g. update a
field, conceptually a "key"” is turned and the VPM table is
locked. When the access task is finished, before leaving
we unlock the VPM.

Exactly the same concept is applied for the APT,
which is the principal central data base for Traffic
Controller in LEVEL 2, containing entries for every process.

In the implementation of this design (coding), we
can see that modules accessing VPM, as for example, ITCSAWAIT
and ITCSADVANCE, and also modules accessing APT, as TCSAWAIT,
TCSADVANCE and TCSPESHANDLER (Traffic Controller Preempt Hand-
ler), lock and afterwards unlock the corresponding global table.

To set these global locks, the implementation of the
present design utilizes the "test-and-set semaphore" oper-
ation. This mechanism, supported by the PL/M built-in
procedure "Lockset" [l], is a spin-lock with potentially

significant impact on system bus traffic.
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3. Inter-Processor Communication

Finally, some method of communication between physical
processors must be provided. This is satisfied by an ability
to generate interrupts between the physical processors. This
capability is required for the implementation of "Preemptive
scheduling" and is supported by the INTEL SBC 86/12A using a

specific hardware configuration and software control.

B. HARDWARE CONFIGURATION

1. System Configuration

The hardware system is configured as a multi-
processor [18]. It consists of a number of single board
microcomputers and a global memory module, connected by a
single shared bus. The system differs from conventional
multiprocessors in that each of the microcomputers possesses
its own local memory. The global memory module is connected
directly to the system bus, and is the only physical shared
memory resource by all of the processors. The general con-
figuration is shown schematically in Figure 10.

2. Specific Hardware Employved

The particular hardware selected for this implemen-
tation is based on the INTEL 86/12A single board micro-
computer [2]. This microcomputer utilizes the INTEL 8086
16-bit microprocessor capable of directly addressing a total

of 1 Mega-byte of physical memory.
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a. The 8086 Microprocessor

The 8086 microprocessor is suitable for a wide
spectrum of microcomputer applications. Systems using 8086
can range from uniprocessor minimal-memory designs, to multi-
processor systems with up to several Megabytes of memory.

The CPU is designed to operate with the 8089
input/output processor and other processors in multi-
processing and distributed processing systems. Built-in
coordinating signals and instructions, and also electrical
compatibility with INTEL'S MULTIBUS shared bus architec;ﬁre,
support the development of multiple-processors design.

Actual performance, of course, varies from appli-~
cation to application. But in comparison to the 8-bit 2-MHZ
8080A, 8086 is seven to ten times more powerful. The high
performance of the 8086 is realized by combining a 1l6-bit
internal data path with a pipelined architecture that allows
instructions to be prefetched during unused bus cycles.
Furthermore software for high-performance 8086 systems need
not be written in assembly language. The CPU is designed to
provide direct hardware support for programs written in high-
level languages, such as INTEL'S PL/M-86 which is used for
the implementation of this operating system design.

The 8086 instruction set supports direct oper-
ation on memory operands, including operands on the stack.

The hardware addressing modes provide straightforward
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implementations of based variables, arrays, arrays of
structures, character data manipulation (there is an exten-
sive use of all these features in the implementation).
Finally, routines with critical performance requirements
that cannot be met with PL/M-86 may be written in ASM-86,
the 8086 assembly language, and then linked with the PL/M-86
code. For example, the Virtual Processor Scheduler of the
Inner Traffic Controller level is written in ASM-86.

b. Processor Architecture

Microprocessors generally execute a program by
repeatedly cycling through the steps shown below:

(1) Fetch the next instruction from memory.

{2) Read an operand (if required by the instruc-
tion).

(3) Execute the instruction.

(4) Write the result (if required by the instruc-
tion).

The architecture of 8086, while performing the
same steps, allocates them to two separate processing units
within the CPU (see Figure 1ll1). The execution unit (EU),
executes instructions. The bus interface unit (BIU) fetches
instructions, reads operands and writes results. These two
units can operate independently of one another and are able,
under most circumstances, to extensively overlap instruction

fetches with execution.
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The result is tliat, in most cases, the time
normally required to fetch instructions "disappears"”,
because the EU executes instructions that have already been
fetched by the BIU.

A l6-bit arithmetic/logic unit (ALU) in the EU
maintains the CPU status and control flags and manipulates
the general registers and instruction operands. All registers
and data paths in the EU are l6-bits wide for fast internal
transfers. The EU has no connection to the system bus, the
"outside world". It obtains instructions from a gqueue
maintained by the BIU. Likewise when an instruction requires
access to memory or to a peripheral device, the EU requests
the BIU to obtain or store the data. All addresses manipulated
by the EU are 16~bits wide.

The BIU performs an address relocation that
gives the EU access to the full Megabyte of memory space.

BIU performs all bus operations for the EU. Data is trans-
ferred between the CPU and memory or I/0 devices upon demand
from the EU. 1In addition, during periods when the EU is busy
executing instructions, the BIU "looks ahead" and fetches
more instruction from memory. The instructions are stored

in an internal RAM array called the instruction stream queue
(which can store up to six instruction bytes). This gqueue
size allows the BIU to keep the EU supplied with prefetched

instructions, under most conditions without monopolizing the
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system bus. The BIU fetches another instruction byte, when-
ever there are two empty bytes in its queue and there is no
active request for bus access from the EU (BIU normally
obtains two instructions bytes per fetch).

Under most circumstances the queue contains at
least one byte of the instruction stream, and so the EU does
not have to wait for instructions to be fetched. The instruc-
tions in the queue are the next logical instructions as
long as, execution proceeds serially. If the EU executes an
instruction that transfers control to another location, then
the BIU resets the gqueue and fetches the instruction from
the new address, passes it immediately to the EU, and then
begins refilling the queue from the new location. In addition,
the BIU suspends instruction fetching whenever the EU requests
a memory or I/0O read or write (except that a fetch already in
progress is completed before executing the EU's bus request).

c. CPU Registers

There are eight 1l6-bit general registers. The
general registers are subdivided into two sets of four
registers each. The first set, called the "H and L" group
(for "high" and "“low"), are the data registers. The second
set, called the "P and I" group, are the pointer and index
registers (see Figure 12).

The data registers have their upper (high) and

lower (low) halves separately addressable. This means that
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each data register can be used interchangeably as a 16-bit
register or as two 8~bit registers. The other CPU registers
always are accessed as 16-bit units only. The data registers
can be used without constraint in most arithmetic and logic
operations. In addition, some instructions use certain
registers implicitly (see Figure 13), thus allowing compact
yet powerful encoding.

The pointer and index registers can also par-
ticipate in most arithmetic and logic operations. The P and I
registers (except for BP) also are used implicitly in some
instructions, as shown in Figure 13.

The 1l6-bit instruction pointer (IP) (analogous
to the program counter, PC, in the 8080 CPU) is updated by
the BIU, so that it contains the offset (distance in bytes)
of the next instruction from the beginning of the current code
segment. IP points to the next instruction. During normal
execution IP contains the offset of the next instruction
to be "fetched by the BIU". Whenever 1P is saved on the stack,
it first is automatically adjusted to point to the next
instruction to be "executed". Programs do not have direct
access to the IP, but instructions cause it to change and to
be saved on and restored from the stack.

The 8086 has six l-bit "status flags" that the
EU posts to reflect certain properties of the result of an

arithmetic or logic operation. A group of instructions is
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available that allows a program to alter its execution
depending on the state of these flags, that is, on the result
of a prior operation. Three additional "control flags" can
be set and cleared by programs to alter processor operations
(see Fiqure 14).
d. Segmentation - Segment Registers

The 8086 does not support the notion of explicit
segmentation. In the 8086, addressing is segmentlike, in
that the base and offset (two-dimensional) addressing is used.
8086 programs "view" the one Megabyte of memory space as a
group of segments that are defined by the application. A
segment is a logical unit of memory that may be up to 64K
bytes long. Each segment is made up of contiguous memory
locations and is an independent separately-addressable unit.

Every segment is assigned (by software) a base
address which is its starting location in the memory space.
All segments begin on l6-byte memory boundaries. There are
no other restrictions on segment locations. Segment may be
adjacent, disjoint, partially overlapped or fully overlapped
(see Figure 15). However, in this operating sysiem design a
physical memory location cannot be mapped on (contained in)
more than one logical segment.

The segment registers point to (contain the base
address values of) the four currently addressable segments

(See Figure 17). Programs obtain access to code and data in
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other segments by changing the segment register, to point to
the desired segment.

Every application can define and use segments
differently. The currently addressable segments provide a
generous work space of 64K bytes for code, 64K bytes for
stack, and 128K bytes of data storage.

The CPU has direct access to four segments at a
time. Their base addresses (starting locations) are contained
in the segment registers (see Figure 16).

In this implementation these four base segment
registers of the 8086 microprocessor are utilized as follows:

(1) Code Segment Register (CS register) is used
for addressing a pure segment containing executable code.

CS register points to the current code segment. Instructions
are fetched from this segment.

(2) Data Segment Register (DS register) is used
for processing local data. The DS register points to the
current data segment that generally contains program variables.

(3) Stack Segment Register (SS register) is used
for implementing the per process stacks (kernel stack and user
stack). SS register points to the current stack segment.
Stack operations are performed on locations in this segment.

(4) Extra Segment Register (ES register) is

typically used for external or shared data. ES register
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points to the current extra segment (which also is typically
used for data storage).

In the 8086, a segment can range anywhere up to
64 kilo-bytes in length. Segments can be placed anywhere
within the 1 mega-byte address space of the 8086 as long as
the segment hexadecimal base is placed so that the last digit
of the base is zero. Segment access and bounds checking
are not supported. Although there is no general segmentation
hardware, this design effects a segmented address space
through a combination of operating system support and system
initialization conventions described in a thesis by
Anderson [19].

e. Physical Address Generation

It is useful to think of every memory location
having two kinds of addresses, "physical" and "logical". A
physical address is the 20-bit value that uniquely ident-
ifies each byte location in the Megabyte memory space.
Physical addresses may range from OH through FFFFFH. All
exchanges between the CPU and memory components use this
physical address.

Programs deal with the logical rather than
physical addresses and allow code to be developed without
prior knowledge of where the code is to be located in memory

this facilitates dynamic management of memory resources.
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A logical address consists of a segment base
value and an offset value. For any given memory location
the segment base value locates the first byte of the con-
taining segment and the offset value is the distance in
bytes of the target location from the beginning of the
segment.

Segment base and offset values are unsigned
16-bit quantities. The lowest-addressed byte in a segment
has an offset of 0.

Whenever the BIU accesses memory to fetch an
instruction or to obtain or store a variable, it generates
a physical address from the corresponding logical one. This
is done (see Figure 19) by shifting the segment base value
four bit positions to the left and adding the offset.

f. The iSBC 86/12A Single Board Microcomputer

The 86/12A is a complete computer capable of
"stand~alone operation" used as the basic processing node of
the multiprocessor. The iSBC 86/12A Board includes a l1l6-bit
central processing unit (CPU), 32K bytes of dynamic RAM, a
serial communications interface, three programmable parallel
I/0 ports, programmable timers, priority interrupt control,
Multibus interface control logic, and bus expansion drivers for
interface with other Multibus interface compatible expansion
boards. Provision has been made for user installation of up

to 16k bytes of read only memory (ROM). iSBC 86/12A is a
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commercial product which satisfies the three basic hardware
requirements for this operating system mentioned in above
subparagraph A (HARDWARE REQUIREMENTS). First, it must
possess a system bus interface. Each microcomputer is capable
of independently accessing a global shared memory via the
system bus. Secondly, the 8086 CPU supports multiprocessor
synchronization directly with an indivisible "test-and-set
semaphore" instruction, which performs the bus lock. Lock
semaphores reside in the shared global memory. Thirdly,
preempt interrupts can be generated by using a bit of a
parallel I/0 port provided on each microcomputer. This
requires connecting a bit of the microcomputer's parallel
I/0 port to the system interrupt structure.
g. Preempt Interrupt Hardware Connection

As with most microprocessors, the 8086 itself
does not possess the capability to directly generate interrupts
destined for other devices. The devices of interest here are
the other processors. We need this capability for the
implementation of preemptive scheduling. The system interrupt
lines are accessible through a jumper matrix {2] located on
the microcomputers. The parallel I/0 output port of each
iSBC 86/12A is connected to this interrupt jumper matrix.
Preempt interrupts are then generated by the system simply
by outputting a single word, through the parallel pcrt, onto

the system interrupt lines.
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Note that only a single interrupt line is
actually required to implement system-wide preempt interrupts.
For details see the next chapter.

h. On Board Bus Structure - System Bus

The iSBC 86/12A board architecture is organized
around a three-bus hierarchy: the on-board bus, the dual
port bus, and the Multibus interface (see Figure 20). Each
bus can communicate only within itself and an adjacent bus
and also each bus can operate independently of each other.
The on-board bus connects the CPU toc all on-board I/O
devices, ROM/EPROM, and the dual port RAM bus. Activity on
this bus does not require control of the outer buses, thus
permitting independent execution of on-board activities.
Activities at this level require no bus overhead and operate
at maximum board performance.

The next bus in the hierarchy is the dual port
bus. This bus controls the dynamic RAM and communicates with
the on-board bus and the Multibus interface.

When the on-board bus needs the Multibus inter-
face, it must go through the dual port bus to thelMultibus
interface. The iSBC 86/12A Board is completely Multibus
interface compatible and supports both 8-bit and 16-bit
operations.

The Intel MULTIBUS [2] is utilized as the system

bus. It is a widely used commercial product with a published
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set of standards. This bus is specifically designed to
support multiple processors and is fully compatible with the

microcomputers used. It is utilized without modifications.

C. HARDWARE ASSESSMENT

The commercially available 86/12A single board micro-
computer was chosen because it was specifically designed
to provide support for multiple processor systems. In using
the operating system described in the next chapter to manage
the microcomputer's physical resources, this microcomputer
is entirely suitable for use as a basic processing node of
an effective multiprocessor system. For multiprocessor

interconnections see Figure 21,
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IV. DETAILED SYSTEM DESIGN AND IMPLEMENTATION

A, STRUCTURE OF THE OPERATING SYSTEM

The distributed modules of the kernel create a virtual .
machine hierarchy which controls process interactions and
manages physical processor resources. The kernel is not
aware of the details of process tasks. It knows each
process only by a name (as an entry in the Active Process
Table) and provides processes with scheduling and inter-
process communication and synchronization services based on
this process identity.

The kernel is constructed in terms of layers of
abstraction. Each layer, or level, builds upon the resources
created at lower levels. The rules of abstraction described
in Chapter II were applied to the design of this structure.

This operating system provides a multiprogrammed multi-~
processor system with segmented process address spaces using

the hardware described in Chapter III. The operating system

is structured as a hierarchy of four levels of abstraction,
as follows:
Level 3: Supervisor
Level 2: Traffic Controller
Level 1: Inner Traffic Controller
Level 0: Hardware (Bare machine), (See Figure 5). |
Level 0 is the bare machine which provides the physical

resources (processors and storage) upon which the virtual
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machine is constructed to give the extended machine
view,

The remainder of this chapter will describe the level of
virtualization (or layer of abstraction) created by each
distributed kernel module.

The Inner Traffic Controller (Level 1) forms the first
level of the hierarchy. It is "closest" to the hardware and
encompasses the major machine-dependent aspects of the system.
The Inner Traffic Controller multiplexes the physical
processors among a pool of more numerous virtual processors.

Residing at the next level (Level 2) is the Traffic
Controller, which is responsible for multiplexing the virtual
processors among a larger number of user processes competing
for resources. The user-accessible inter-process communication
and synchronization primitives (Advance, Await and Ticket)
provided at this level allow the user to easily satisfy complex
system-wide inter-process synchronization requirements.

The Supervisor resides atAthe topmost level (Level 3).
The Supervisor's purpose is to provide common services for
user processes. In this implementation it only provides a
simple assembly language interface to the kernel by having

a single entry point into the kernel (the Gate or Gatekeeper).

B. CONTROL OF PROCESSOR MULTIPLEXING
There are two common schemes for the control of processor

multiplexing: "centralized control" and "distributed control”.
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Centralized control is based on the idea of a central
agent which is responsible for the binding of virtual pro-
cessors to real processors. All these bindings are caused by
the action of the central agent. This agent can be viewed
as a process, since it is a sequential computation that per-
forms operations on the state of the system. 1In this scheme
of control usually this central agent is permanently bound
to a dedicated real processor. Of course this implementation
requires some kind of communication channel between the real
processors and the central agent.

The main advantage of the centralized algorithm is, "unity".
Since the centralized scheme is executed as a process permanent-
ly bound to one real processor, it can be described by a single
sequential program that makes one decision at a time (that
means a simply structured processor multiplexing policy).

An alternative scheme for the control of processor multi-
plexing is one in which the functions are accomplished by a
distributed algorithm, executed by each process on all real
processors.

The main advantage of the distributed scheme is, "autonomy".
This autonomy afforded by a distributed system can increase
the amount of parallel activity (real processors can execute
in parallel). This scheme also results in a uniform design
that is identical for every processor.

The advantages of each scheme are disadvantages of the

other. 1In the centralized case the lack of autonomy prohibits
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the parallelism afforded by the distributed scheme. On the
other hand, in the distributed case, the autonomy makes it
potentially difficult to understand the interaction of the
multiplexing algorithm executed by different real processors.

1, Distributing the Operating System

One of the primary concerns in any multiple computer
system is the issue of performance. The type of system in
the present implementation is a multiprocessor with a "single"
shared system bus. Thus the most glaring potential "bottle-
neck" is the system bus. Thus it becomes desirable to
minimize accesses to this resource which must be shared by
all of the real processors.

The decision was made to "distribute" the operating
system logically and physically to reduce the "system bus"
use. Logically the segments of the operating system kernel
are distributed within (as part) the address space of each
user process. On the other hand, the performance issue is
dealt with by physically distributing copies of the kernel in
the local memories of each of the real processors. This allows
high-speed access to kernel functions without necessitating
the heavy use of the system bus for code fetches thus
reducing "BUS contention".

Since the operating system is small, the memory wasted
by distributing a copy of the kernel to each single board
computer is a small price to be paid to allow performance to

grow with the addition of real processors.
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Thus, each computing node can be regarded as "semi-
autonomous” in that each of the processors schedules itself.
The modes are still centrally controlled by the set of system-
wide data tables, kept in the global memory, which provides
access to all real processors and thus eliminates the need of
a central controlling process. The amount of memory needed
for these system-wide data tables is almost negligible.

In this implementation there is no notion of a master-
slave relationship among individual microcomputers, nor are
individual kernel functions divided among them, as is
commonly done. Rather, the "entire" kernel is distributed on

each single board computer.

C. REAL TIME PROCESSING

Real~-time control systems are designed for handling data
within a time period which is consistent with the response
time demanded by the process which generated the information.
Such systems operate in a multi-programmed environment where
the execution of a number of tasks is determined by the soft-
ware priorities, hardware interrupts, timing algorithms and
requests from other tasks (requests from one task to start,
suspend or terminate another task) to pass data from one task
to another.

A real-time operating system must be designed so that it
is impossible for any program and any user to interfere with

the execution of critical tasks by halting the machine, by
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changing interrupt priorities or by innappropriately overwriting
memory.

Real-time processing involves the performance of time-
critical processing often related to the control of external
devices. This application requires that some mechanism be
employed to ensure that the time-critical processing is
given immediate attention.

The hardware-supported "process preemption" mechanism
employed in the system provides the rapid response required
for real-time processing. The priority-driven preemptive
scheduling technique used provides for expeditious handling
of processes which perform the time-critical functions. These
processes are assigned high priorities so that the system will
preempt other processes of lower priority which may be in the
running state. Thus when one of these high-priority processes
is signalled, it can be immediately scheduled and thus gain
control of the processor resources.

The actual system response time for a task request depends
mainly on whether or not another task is running at a higher-
priority level. To prevent high-priority tasks from executing
too long, a "watchdog timer" is often used to guarantee that
all tasks are serviced. This timer is set at the start of each
task with the maximum duration that a task may run at a
particular priority level before being suspended or dropped.
This watchdog timer is not yet implemented but it will be a

useful added capability.
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D. SCHEDULING

Processor multiplexing and process multiplexing require
a policy, called the Processor/Process multiplexing policy
algorithm, or simply "Scheduling"” algorithm.

In this design the scheduling functions are divided
between the Inner Traffic Controller and the Traffic Control-
ler levels. The Inner Traffic Controller multiplexes Virtual
Processors among Real Processors. Each Real Processor
possesses a fixed number of Virtual Processors (4 in the
current version). At any one time the Real Processor can
only execute "one" Virtual Processor. The choice of the
Virtual Processor that will run in each Real Processor is
decided by the Virtual Processor Scheduler (VPSCHEDULER)
that is a routine in the Inner Traffic Controller level.

The Traffic Controller multiplexes Processes among Virtual
Processors. The Traffic Controller Scheduler (TC$SCHEDULER)
is responsible for that scheduling. Both scheduling algorithms
are "priority driven". (The highest priority Virtual Processor
or Process will run first). These algorithms receive as input
the set of Virtual Processors and Processes respectively, that
can be run and choose the next one to run.

More details will be presented when we will discuss the

algorithm of these two "scheduler" modules.

E. PROCESS ADDRESS SPACE
The address space of a process is a set of PL/M-86 segments
such as procedures (code), local variables (data), external
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data (shared data) and a stack. Physical memory is allocated
to the segments of a process in such a way as to limit system
bus contention, as discussed by Anderson [19]. 1In this
implementation the concept of a "per process stack" is a

key element in the management of processes.

1. The PL/M-86 Stack

Intel's high level language PL/M-86 [1,6] utilizes the
stack segments to implement per process stacks. Addressing
of stacks is accomplished by using three of the 8086's
registers as shown in Figure 22. The Stack Segment (SS)
Register contains the base location of the stack segment in
memory. The Stack Pointer (SP) Register addresses the current
top of the stack as an offset from the base of the stack
segment, (the value in the SS Register). The Base Pointer
(BP) Register also holds an offset from the SS Register and
is used to establish the procedure activation records [3, 4,
5]. During the "process creation" in the current version of
the operating system one of the parameters passed to the
operating system for a specific process is the initial wvalue
of the SP register ("maximum stack length"). It is used to
assure no "stack overflow", If the process has only one
module, the "maximum stack length" can be extracted for the
specific process during its preparation (Compilation-Linking-
Locating). Specifically the LST output file of the Compiler
(file name.LST) at the end provides the information illus--

trated in Figure 23.
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There is also a second way to extract this information
using the MP2 output file of the Locater (file name.MP2).

This method can be used also when a process consists of

VUDTLE INTORMATION:
J22F 27y S[7% = J18CH & 142
CONSTANT 4718 SI7F = 2727H 2
FAATATLE 1BIN SIZI = (77LH 1127
MAXIMEM STACK 31232 = 3024 €3
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iwD CF PL/M=-8%2 COMPILATICN

FIGURE 23. MAXIMUM STACK S1ZE (SAMPLE LST COMPILER OUTPUT)

several modules linked together. At the end of MP2 file is

found the maximum stack size as shown in Figure 24.

YEMIORY “AP OF MODCLE INITINT
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FIGURE 24. MAXIMUM STACK SIZE! BAMPLE MP2 LOCATER OUTPUT)

To obtain the above "maximum stack size" information the

command "COPY :Fl: File name.LST TO :CO:" is typed on the MDS
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(INTEL'S Microcomputer Development System) after the compila-
tion or the command "COPY :Fl: File name.MP2 TO :CO:" after
the Locating Process. These commands will present the
Compiler or Locater output file on the CRT screen of the MDS.
If one prefers to have this output on the printer, just
change ":CO:" to ":TO:".

In the same way we can extract the information on the
maximum stack size of the kernel.

In the current version of the operating system, we use
two "per process" stacks dividing the "address space" of each
process into two "domains" of execution and separating the
"user domain" from the "kernel domain". We call the
corresponding stacks the "user stack" and the "kernel stack".

In this version:
Maximum Kernel Stack Length =
Maximum Stack Size for the Kernel +10 and
Maximum User Stack Length =

Maximum Stack Size for the "User Program""Linked"” with
the "Gate" + 10.

This value 10 is used to avoid overwriting the "stack
header" shown on Figure 26 which occupies the first words
in the stack, just above the stack base. It is important to
make a distinction between the "User Program" or "Application
Program” and the "User Process" or Application Process". The
User or Application program is the "job" submitted to the

operating system and the User or Application Process is this

9s
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program in execution on a processor and is the submitted job
linked with the distributed part of the Operating system. In
Figure 25, we can see the User Program as the "subset A" and
the distributed part of the operating system as the "subset B".

The running User Process (this program in execution) is
the "Union C" of these subsets A and B, (C = AUB). This
connection (linking) of the job with the operating system is
accomplished via the "Gate."

2. The Stack as the "Address Space Descriptor"

In this system the per prccess stacks are used to
maintain the process state information. This includes the
current execution point (when the process is not actually
running) and the locations of the code and data segments.

This allows the system to "swap" in a new address space

(viz., do a "context switch") by changing "only" the value

in the SS Register which is thus used in a manner somewhat
analogous to the MULTICS "Descriptor Base Register" (DBR) [9].
Then the operating system finds the remaining of the needed
information to run the specific Process inside its stack.

Figure 26 shows how this information is stored in the
kernel stack while a process is not actually running on a
physical processor. The Base Pointer and Stack Pointer are
stored in reserved locations at the very beginning of the
stack segment, (*header" of the Stack). Figure 26 illustrates
the status of the kernel stack after an interrupt within the

kernel.
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h In order to identify the stack segment and thus

" access the address space of a process, the stack segment base
address is used in a dual role. First, a "unique base address"

v is assigned to the stack of each process which provides a

"unigue segment" for each stack. This base address is used

for addressing locations within the stack. Secondly, the

N base address serves as a descriptor for the address space of

é; each process. Thus the binding of a processor is changed from

one process to another "merely" by changing the base address,

viz., changing the value in the Stack Segment (SS) Register.

Figure 26 illustrates how the "per process" Kernel Stack is

implemented in the current version of the Operating System.

More details about the currently used Stack mechanism (two
per process stacks, two domains of execution) will be discussed
when we describe the "Create Process" module of the Traffic

Controller.

F. COMMUNICATION AND SYNCHRONIZATION

1. Process Synchronization

The problem of process synchronization arises from the

need to share resources in a computer system. This sharing

50 8

requires coordination and cooperation to ensure correnct oper-
ation. This coordination is forced upon the processes by the
operating system because of the scarcity of resources, for
example, the need to wait for access to an 1/0 channel. 1In

other cases a simple job may consist of several interactive

processes, such as an airline reservation system.

" 99

!
3
3
§
i
R

Bk £ - o eame i e




e

e e — = =

<

Associated with processor allocation and interprocess
synchronization are two synchronization problems, "race
condition" and "deadly embrace" or "deadlock situations".

2. "Race Condition"

A race condition occurs when a desired action cannot
be completed in one indivisible step. For example, in order
to gain exclusive control of a printer in Process 1 in
Figure 27, it is important to check if the printer is already
in execlusive use by Process 2. If a flag is used (F=0, not

in use) (F=1l, in use) to indicate whether or not the printer

OPERATING
SYSTEM UE PRINTER
RrE
pRINT
PROCESS 1 T
RINT RE UES
PROCESS 2

FIGURE 27. A SIMPLE RACE CONDITION

is in execlusive use, then this flag has to be interrogated.
If Process 1 interrogates F and finds its value is zero,

then it can set the value of F to one and enjoy the execlusive
use of the printer. A problem arises when both Process 1

and Process 2 nearly simultaneously interrogate the flag in

the following sequence:
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Process 1 F=0? Yes
Process 2 F=0? Yes
Process 1 Sets F=1l

Process 2 Sets F=l.

In this case both processes falsely gain the impression that

they have exclusive use of the printer. This so called
"race condition" can be avoided by an indivisible test and
set operation which would prevent Process 2 being mislead.
Such a test and lock operation is the 8086 LOCKSET built-in
procedure.

In addition to physical devices, there are other
shared resources, such as a shared database, that require
the same type of synchronization to avoid race conditions.

For example, in this implementation in order to avoid race

conditions in the shared databases APT and VPM, we implemented

a lock per database. When a Virtual Processor needs to read

or update the shared database, it locks this common table
(this way it locks out all the other Virtual Processors).
After the completion of this action the Virtual Processor
unlocks the database, so another Virtual Processor can
access it.

3. "Deadly Embrace"” or "Deadlock Situations"

A "deadly embrace" is a situation in which two pro-
cesses are unknowingly waiting for resources that are held

by each other and thus unavailable [15]. See Figure 28.
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FIGURE 28. DEADLY EMBRACE SITUATION

"A" and "B" are sharing the use of the printer and card
reader by means of the request and release operations (as
stated in the previous paragraph). Due to independent
scheduling of the processes the "request" and "release" oper-
ations may be interspersed in several different orders.

Lets consider a case that starts with Al (request
printer for process "A") and Bl (request reader for process
"B"). If then A2 occurs (request reader for process "A"),
process "A" must be blocked because the reader is already in

use by process "B". Then when B2 occurs (request printer
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for process "B"), process "B" must also be blocked because

the printer is already in use by process "A". 1In this way

we confront a situation where each process is waiting for the
other to release a needed resource. A deadly embrace situation
is resulted.

We have already concluded that synchronization primi-
tives like the described "request" and "release" cannot avoid
"race conditions" and "deadlock situations". Several more
sophisticated synchronization primitives have been developed
to overcome these problems. The most commonly used among
them are: Dijkstra's "P" and "V" operations on "counting
semaphores" [12], Saltzer's "Block-Wakeup" or sometimes
called "wait-Signal" [14] and lastly Kanodia and Reed's
"Eventcounts" and "Sequencers" [10].

4. Shared Segment Interactions. Security

In the paragraph B5 of Chapter II it has been already
discussed that the implementation of this operating system
has not considered the "internal security" of the system, but
in the design there are all the ingredients for future exten-
sions in this direction. A future extension also is the
addition of "file management". We shall mention here two
more problems which are related to the selection of the
synchronization mechanism.

a. Confinement Property

During the last five years the security kernel

technology has demonstrated not only that a kernel can provide
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security but also that it is practical in terms of performance,
functional capability, and compatibility. A successful
implementation of a kernel is based on three [23] engineering
principles: (1) "completeness", in that all accesses to
information must go through the kernel; (2) "isolation”, in
that the kernel must be tamperprcof; and (3) "verifiability",
in that there must be a direct correspondence to the model

and specification requirements.

A secure computer system will not occur as a
spontaneous result of other design goals. Security must be
explicitly designed in from first principles, and this is
the reason why the confinement problem is discussed and has
influence in the selection of the synchronization mechanism.

The major problem that has to be handled for
proper system security is the "confinement property" or
"* property" [24].

The "confinement property" has to prevent a process
from "reading" a file with a "higher classification"” or
"writing" (i.e., storing or updating) a file with a "lower
classification”.

‘ b. Readers/Writers Problems

Another problem closely related to the confinement
problem which involves the Supervisor, is the "readers/writers"
problem [25]. In order to preserve file integrity, reading
and writing of a shared file cannot be allowed at the same

time.
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Both the confinement and readers/writers problems
can be solved in one of two ways. One is mutual exclusion,
a mechanism which forces a time ordering on the execution of
critical regions, forces concurrent processes into a total
order execution sequence. This is counterproductive to the
purpose of the process structure of this implementation,
which inherently allows concurrent execution of processes.

A second and relatively new method is the use of
Eventcounts and Sequencers ([10] to control access to critical
regions. This method preserves the idea of concurrent
processing to a much greater extent and also addresses the
confinement property for a security kernel.

5. Synchronization Background

In order to keep processor multiplexing simple, it is
desirable to have a simple interprocess communication and
synchronization mechanism. Before describing the "Eventcount-
ing" synchronization mechanism employed in the design and
implementation of this operating system, it is worthwhile to
discuss two generally used synchronization mechanisms, the
"Semaphore” and "Block-Wakeup".

a. The "Semaphore"

In most synchronization schemes, a physical entity
must be used to represent the resource. This entity is often
called a "lock byte" or "semaphore". Thus, for each "shared
database” (for example APT and VPM in this implementation)

there should be a separate lock byte. We will use the
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convention that lock byte = 0 means the resource is available,
whereas lock byte = 1 means the resource is already in use.
Before operating on such a shared resource, a
process must perform the following actions with no interrup-
tion:
1. Examine the value of the lock byte (either it is 0
or 1).
2. Set the lock byte to 1.
3. If the original value was 1, go back to step 1.
After the process has completed its use of the resource, it
sets the lock byte to zero. Some other terms used for this
operation are "Test-And-Set" instruction, "Software Lockout",
"Indivisible Read-Alter-Rewrite", "Indivisible Test-And-Set"”
semaphore, "Spin-Lock" procedure and so on. In this design
we use a built-in PL/M-86 procedure called LOCKSET, an
indivisible test-and-set semaphore, to implement software
locks in shared databases (APT, VPM). The hardware "bus lock"
is used to make the operation indivisible. It is important
to note that the lock and unlock operations do, in fact,
prevent “Race Conditions".
b. "P" and "V" Operations On Counting Semaphores
A more general form of the above LOCK/UNLOCK
mechanism, called the "P" and "V" operations, has been defined
by Dijkstra (1968). "P" and "V" operate on the "counting

semaphores" which are variables that take on integer values
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(but not just 0 and 1). The mechanisms can be defined as
follows:

P(S):

l. Decrement value of S (i.e., § = §-1).

2. If S is less than 0, WAIT (S).

vV(s):

l. 1Increment value of S (i.e., S = S+1).

2. If S is less than or equal to 0, SIGNAL (S).

WAIT and SIGNAL are primitives of processor manage-
ment. A WAIT (S) sets the process to the blocked state and
links it to the lock byte S. Another process is then selected
to run by the process scheduler. A SIGNAL (S) checks the
blocked list associated with lock byte S. 1If there are any
processes blocked waiting for S, one is selected and is set
to the ready state. Then the scheduler will select a process
to run.

In order to implement semaphores in the system,
the processor multiplexing algorithm must be informed of all
"V" operations to semaphores, and must keep track of the set
of virtual processors that are waiting for each semaphore to
indicate that the event has occurred.

Unfortunately semaphores have several disadvantages.
First, they are limited to cases where the occurrence of an
event will allow a fixed number of virtual processors to
proceed out of the waiting state. (This mechanism has no

"broadcast" capability). Second, because of this limitation,

107

AN T AT s T




the ability to proceed past a "P" operation on a semaphore
automatically becomes a kind of scarce resource that can be
used as a communication channel among processes that wait on
the semaphore.
This latter point is quite important in a secure
system design. Although communication of information is
inherent in the inter-process synchronization mechanism
between the virtual processor that causes an event and the
virtual processors that await the occurrence of that event,
there is no inherent requirement that virtual processors
waiting for the same event to occur should have a communication
path among themselves.
c. "Block~Wakeup"
This mechanism described in detail by Saltzer
[14] is quite similar. A discussion of some problems
encountered with this mechanism is presented in [15].
Reed in his thesis (15] notes:
"If virtual processor A can wake up virtual processor B,
there is no guarantee that the reason virtual processor B
is waiting is the reason virtual processor A wakes B up.
Virtual processor A's wakeup will then be misinterpreted
by B, or ignored by B. 1In the first case, B will proceed
under the false assumption that the event awaited happened,
while in the second case, B will lose the wakeup (This is
the case described by Saltzer as the "lost wakeup" problem)
even though it may be meaningful to B at a later time.
These problems can be serious for system security, if the
wakeups are intended for a protected system operation in
B's virtual processor, because a wait operation executed
outside of the protected part of the system can receive
inter-process synchronization signals intended for the

protected part. The arrival of an inter-process synchro-
nization signal can carry privileged system information.
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An unprotected receiver may either gain unauthorized
access to privileged information, or prevent it from
reaching its proper destination. These occurrences
cannot be prevented because B is multiplexing the meaning
of his wakeup-waiting switch, and so must allow A to wake
him up at all times, even though B waits for A's event
only sometimes",

For these reasons, along with the need to deal
with synchronization in "distributed" systems, Kanodia and
Reed {10] have designed an inter-process synchronization
mechanism that is in some sense more general than either
semaphores or block-wakeup, and uses "Eventcounts" and
"Sequencers”". We shall discuss eventcounts and sequencers
later on in this Chapter.

6. Communication and Synchronization In This Implementation

a. Introduction
The design of this operating system supports multi-

programming and multiprocessing. Multiprogramming is used to
improve system efficiency and to create a virtual environment
which frees the remainder of thé operating system from a
dependence on the physical processor configuration. On the
other hand the process structure provides the essentials for
parallel (concurrent) processing. 1In a multiprocessor
environment concurrent processing can provide faster comple-
tion of a job. Using n processors working on the same job
and each of them doing separate tasks (after a suitable
partitioning of the job), the overall time required to run

the job can be reduced, frequently by a factor n.
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The above discussion provides some of the major
reasons why this system is designed to support concurrent
processing on multiple processors. In addition, the
existence of multiple physical processors gave rise to the
need for the design of processor multiplexing to be done in
two-levels. The Traffic Controller that multiplexes processes
among virtual processors and the Inner Traffic Controller
that multiplexes physical processors among a fixed larger set
of virtual processors.

Since this system will also be used to support
real-time processing, a pre-emption mechanism is provided to
facilitate preemptive scheduling.

The above process multiplexing, processor multi-
plexing, and preemptive scheduling require the following
support in communication and synchronization:

(1) Inter-process communication and synchroniza-
tion, at the Traffic Controller level.

(2) Inter-virtual processor communication and
synchronization at the Inner Traffic Controller level.

(3) Inter-real processor communication needed to
support the preemptive scheduling.

b. Inter-Process Communication and Synchronization

For concurrent processing, a job composed of
sequential and non-sequential tasks, is explicitly divided
(partitioned) into an appropriate structure of processes

that can run concurrently. There is the possibility that
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after the partitioning the resulting processes must interact
{need cooperation).

It is the responsibility of the operating system
to provide mechanisms for communication and synchronization
between cooperating processes. There are two different kinds
of interaction that processes must be able to achieve.

First there must exist a way for processes to
exchange data. This mode of communication is called "inter-
process communication”. In a computer system that allows
sharing of memory segments between processes (in our case
shared segments will reside in the "global" memory board),
there is no need for a special inter-process communication
facility to be built into the processor multiplexing algorithm.
Shared memory segments provide an extremely high bandwidth
data communication channel between the processes sharing
these segments. Any protocol for inter-process communication
can be established by the processes using the shared segments.
Therefore the inter~process communication will be handled
outside of the scope of this thesis. The responsibility is
left to the user of the operating system, since it is dependent
on the specific application program.

Secondly there must exist a way for processes to
wait for data prepared by other processes and for processes
that prepare such data to signal that this data is available.
This interaction is different than communication of data and

is called "inter-process synchronization”. Together they are

111

- e



R |

called "inter-process communication and synchronization”.
Another term for inter-process synchronization is "inter-
process control communication" since the effect of such
communication is purely to reenable a waiting control point.

The actual coordination is realized inside the
kernel by the use of "shared writable" segments and is used
for controlling the execution of processes and coordinating
the sharing of data.

The synchronization between processes is "visible"
to the user and is supported by the TCSAWAIT and TCSADVANCE
that are kernel calls to the Traffic Controller level. We
have already discussed the basics of these two synchronization
primitives in paragraphs C6a, C7a and D of Chapter II. The
details are described in the corresponding modules of the
Traffic Controller in this chapter.

The inter-process synchronization is intimately
related to the structure of the "processor multiplexing
mechanism". The ability of a process to indicate that it
does not need virtual processor resources until a particular
"event" happens is basic to the economic advantage of process
multiplexing among virtual processors.

c. Inter-virtual Processor Communication and Synchro-
nization

The ability of a virtual processor to indicate
that it does not need real processor resources until a parti-
cular "event" happens is, similarly, basic to the economic

advantage of virtual processors multiplexing among real

112

PSSV 217 BTN

LR Y

TS A PRTIE RN 35

o



processors. Otherwise if a dedicated real processor is

actually available for each virtual processor, then the "busy-

waiting" would be an adequate mechanism for synchronization.
{("Busy-waiting"” is repeatedly testing the state of a shared
memory word in a loop).

If for example, a user process calls upon some
system service, such as a disk I/0 or an I/0 for a real-time
sensor, it must wait for that service to be completed before
it can proceed. (The performance of a system service is, in
this case, considered to be part of the requesting process).
However, the service may actually be supported by another
virtual processor. To control this interaction, the Inner
Traffic Controller that multiplexes physical processors among
virtual processors, provides the required inter-virtual
processor communication and synchronization mechanism using
the primitives ITCSAWAIT and ITCSADVANCE.

We have already discussed the basics of these two
synchronization primitives in paragraphs Céb, C7b and D of
Chapter II. The details are described in the corresponding
modules of the Inner Traffic Controller in this chapter.

This inter-virtual procaessor synchronization is
"invisible" to the user, and is used by the operating system
for the management of physical resources. This mechanism
provides the solution to a difficult problem: "the

synchronization" that will be faced later on, when the
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"Memory Management" and "I/0 Management" are added to the
operating system.
d. Inter-Real Processor Communication

To support real-time processing we need the
preemptive scheduling. Since we are working in a multiple-
processor environment the operating system has to support an
inter-real processors communication mechanism, which is of
course related to the inter-virtual processors synchronization
mechanism. It will be explained by the two examples below.

It is important to note that the preemptive
scheduling mechanism is completely distinct from the synchro-
nization mechanism and its purpose is to cause the "immediate
attention” of a real processor when it is needed for real
time applications.

The TCSADVANCE and ITCSADVANCE modules provide
a "broadcast" capability. Let us examine first the case of
TC$SADVANCE. When an application {(user) process calls the
TCSADVANCE, the result is an incrementing by one of the
associated event's current value. This change of the event's
value is "broadcast" to all processes that are awaiting this
value for the specific event. We have to remember here that
the operating system is distributed to each Real Processor
and also that each real processor in this implementation
possesses four virtual processors. If a process waiting for
the above specific event is bound to a Virtual Processor

which belongs to another real processor, then there is no way
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to signal that virtual processor to inform it of the occurrence
' of this event. Similarly, if during the physical resources
management (for example I/0 management) the ITCS$ADVANCE is
invoked by the operating system (this is "invisible” to the
user), it results again in an incrementating by one of the
associated event's current value (now in the Inner Traffic
Controller level). If this change has to be "broadcast" to
a Virtual Processor awaiting this event and the Virtual
Processor belongs to another Real Processor, then again there
is no way to inform that Virtual Processor of the occurrence
of the specific event.

To facilitate the inter-real processor communica-
tion, we employ the hardware interrupt. Similar to most
microcomputers, the 8086 microprocessor does not have the
capability to send hardware interrupts destined for other
devices (here the devices of interest are other CPU's). To
solve the problem we have suitably configured the hardware
using the on board (8086 microcomputer) hardware chips, 8259A
Programmable Interrupt Controller and 8255A Programmable
Peripheral Interface and the Multibus interface.

This configuration is discussed in detail in
paragraph G of this chapter.

e. Events, Eventcounts, and Sequencers

The ability to synchronize the execution of pro-

cesses throughout the system (irrespective of which micro-

computer they are loaded on) is the cornerstone of the power
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and flexibility of this system. To accomplish this, process
synchronization is based on the notion of "events”.

An "event" is anything that one considers signif-
icant and can direct, in some fashion, the computer to respond
to. For example events of interest are: the completion of a
program, a buffer becomes full or empty, a printer is ready,

a process in execution on a VP reaches a control point defined
by the user. More generally, the events can represent virtually
anything of interest to the programmer.

When an event occurs, the computer recognizes that
it is to respond in some specified manner.

"Eventcounts"” and "sequencers" allow processes to
synchronize with each other somewhat indirectly. To synchronize
directly, a process would have to somehow identify the other
processes with which it is synchropizing (viz., explicitly
signal a process by name). This would require the naming of
individual processes or some similar identification scheme.

Rather than using a process naming scheme, the
individual processes "agree", in a sense, to cooperate by
using a common set of memory objects called eventcounts and
sequencers. In this way, even though the processes must know
the names of the eventcounts and sequencers that they use,
they are not required to know anything at all about each
other's identities. 1In fact, a process need not even know
how many other processes will be synchronizing with it. This

offers some advantages in parallel processing. Processes that
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synchronize with eventcounts do not have to know how many other
processes will also use the same eventcounts. This means that
fewer coding changes will be required when, for example, a
single process is partitioned into several processes all
executing in parallel. All of the "new" processes will
synchronize on the same eventcount so that no changes are
required in the process that originally synchronized with the
single process.

Eventcounts are used to keep track of the occurrence
of specific events. They are managed for the user by the
system. Sequencers can be used to impose a linear order on
the occurrence of events. They are thus used with event-
counts to provide for mutual exclusion.

£. Eventcounts

"Eventcounts" are used in this implementation to
allow processes tu arbitrate access to shared resources. An
eventcount is defined by Reed [10] as: "An eventcount is an
object in the system that represents a class of events that
will eventually occur". Each eventcount represents a distinct
class of events. This class of events is ordered so that by
the time event N occurs all events numbered from 0 to N-1 will
have occurred. Consequently, the set of events that have
occurred at any particular time can be represented by the
number of the last event to occur. This number is known as

the "current value" of the eventcount.
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An eventcount is associated with some type of event
of interest, e.g., occurrence of a real-time interrupt, a data
segment being read or written into, etc. Eventcounts are
implemented as sets of positive integers from 0 to infinity
(the current limit in this implementation is actually 65,536
using PL/M-86 "word" variables which is "adequate" for the
applications anticipated) and are used to keep track of the
total number of such events that have occurred.

The eventcount synchronization mechanism has the
useful property that two virtual processors waiting for events
in the same class (thus recorded in the same eventcount) do
not have an inherent intercommunication path. The enabling of
one virtual processor to proceed does not automatically disable
any other virtual processors from proceeding and allows
broadcasting events to multiple virtual processors. This is
a function not easily achieved using semaphores. Consequently,
this mechanism is more desirable for use in a secure system to
address the "confinement property". Further, the implementa-
tion of eventcounts is not inherently more difficult than
that of semaphores.

There are three operations which may be performed
on eventcounts, as follows:

(1) "Read” Operation. The current value of an

eventcount may be obtained by the READ operation. This oper-

ation returns the present value of the eventcount as a "positive
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integer" n. From this value, one may infer that events 0 to n
have already occurred. TCS$READ (Traffic Controller RFAD) in
the present implementation is a function call in the Traffic
Controller Level available ("visible") to the user via the
"GATE" so that it will provide him the capability to obtain,
the current value of the eventcount of interest specified

in the call. Details will be discussed in the corresponding
module of the Traffic Controller later in this chapter.

(2) "AWAIT" Operation. Allows the calling subject

to await a particular event in the class associated with the
eventcount., This operation requires that the event name and
the awaited eventcount value be specified. Particularly in
the present implementation there are two procedures as follows:

TCSAWAIT ( Traffic Controller AWAIT) is an
inter-process synchronization primitive. Allows a process (the
"calling" process) to suspend its own execution (enter the
"blocked" state) until the event specified in the input argu-
ment (by name and value) has occurred, viz., the eventcount
reaches the specified awaited value. The result is that the
process will "give away" the virtual processor to which it is
bound. The effect of this operation is similar as the conven-
tional Saltzer's "Block" operation or Dijkstra's "P" operator
{on counting semaphores).

TCSAWAIT is a procedure in the Traffic
Controller Level "visible" to the user via the "GATE". Details
will be discussed in the corresponding module of the Traffic
Controller later in this chapter.
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ITCSAWAIT (Inner Traffic Controller BJWAIT), is
an inter-virtual processor synchronization primitive. It
suspends the execution of the "running" virtual processor
(setting its state to "waiting”) until the event specified
{(by name and value) in the input argument has occurred, viz.,
the eventcount reaches the specified awaited value. This
synchronization primitive is used by the Inner Traffic
Controller for the management of system resources. ITCSAWAIT, is
"invisible" to the user, and is used only by the operating
system. Details will be discussed in the corresponding module
of the ITC later in this chapter.

TCSAWAIT/ITCSAWAIT will prevent the process/
virtual processor respectively from proceeding until the
current value of the eventcount reaches the awaited event
value specified in the procedure's call.

{3) "ADVANCE" Operation. This operation informs

the processor multiplexing mechanism of the new value of the
advanced eventcount and requires that the event name be
specified as an argument. Particularly in this implementation
there are two procedures as follows:

TCSADVANCE (Traffic Controller ADVANCE) is an
inter-process synchronization primitive. A TCSADVANCE opera-
tion is performed by a process when an event has occurred. It
increments the current value of the specified eventcount by
one to reflect the occurrence of the event. This has the

effect of signalling the event's occurrence to other processes
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which were waiting for it by virtue of having previously per-
' formed an AWAIT operation on that event. The effect of an
ADVANCE operation is essentially the same as a Saltzer's
Wakeup operation of Dijkstra's "V" operator (on counting
- semaphores) .

The eventcount signalling mechanism has an
"automatic broadcast effect” which offers an advantage in
parallel processing. This broadcast capability allows the
"simultaneous signalling" of several processes which otherwise
would have to be signalled "sequentially”.

TCSADVANCE is a procedure in the Traffic
Controller Level "visible" to the user via the "GATE".

w TCSADVANCE is also in this implementation responsible for

the corresponding module of the Traffic Controller later in
this chapter.

| ITCSADVANCE (Inner Traffic Controller

J

y the "preemptive scheduling". Details will be discussed in

} ADVANCE), is an inter-virtual processor synchronization

’% primitive. Signals that the specified in the call event

| (event's name is the input argument) has occurred by advanc-
ing (incrementing by one} the value of the associated
eventcount. This eventcount signalling mechanism has also
an "automatic broadcast" effect which offers an advantage in
parallel processing. All the virtual processors awaiting

the occurrence of this specific event are informed.

ITCSADVANCE is a procedure in the Inner Traffic Controller

Y
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Level "invisible" to the user and is used only by the opera-
ting system for the management of system's resources.
Details will be discussed in the corresponding module of the
ITC later in this chapter.

g. Sequencers

There are many situations where accesses to
shared resources must be totally ordered. Eventcounts alone
are not sufficient to accomplish this. To provide the
capability for mutual exclusion, another type of object
called a "sequencer" [10] is employed. A sequencer is
implemented as a positive integer ranging in value from 0 to
infinity (as with eventcounts, the current limit in this
implementation is 65,536). However, a sequencer is used to
provide total order to the occurrence of events.

A sequencer is also necessary to solve the
confinement and readers/writers problems. Some synchroniza-
tion problems require arbitration, e.g., two write accesses
to the same segment. Eventcounts alone as already discussed
do not have the ability to discriminate between two events
that happen in an uncontrolled (i.e., concurrent) manner.

Initially a sequencer has a value of 0. The value
increases by one each time a "TICKET" operation is performed
on it. TICKET is the only operation defined on a sequencer.
TICKET returns a unique monotonically increasing value with
each call. It is similar to getting a ticket and waiting to

be served at a restaurant. Two uses of TICKET will return
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two different values corresponding to the "relative time" of
call. Thus, a set of events can be totally ordered by using
the TICKET operation. Details about TICKET operation will be
discussed in the corresponding module of the TC later in this

chapter.

G. INTERRUPT STRUCTURE

1. Introduction

The operating system has to control a multiple-
processor environment. This generates the need of some method
of communication between physical processors. This need is
satisfied by an ability to generate hardware interrupts
between the physical processors. The interrupts are used
for the implementation of "preemptive scheduling". INTFL's
8086 microprocessor, as most microprocessors, doesn't possess
the capability to directly generate interrupts destined for
other devices (the devices of interest here are other
processors). We provide that capability by suitably configur-
ing the hardware and using some software control. Note that
only a "single"” interrupt line is actually used to implement
system-wide preempt interrupts. This is the only hardware
configuration adaptation to facilitate the operating system
and we are going to describe it in detail.

The system's interrupt structure is managed by the
Inner Traffic Controller. 1In particular, a physical system

interrupt is transformed into a synchronization signal to a
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waiting virtual processor. This structure is particularly
important for the support of real-time processing and note
that this is completely distinct from inter-process synchro-
nization and communication.

To implement this desired configuration we use the
8259A PIC (Programmable Interrupt Controller) and 8255A PPI
(Programmable Peripheral Interface), both on board on the
86/12A microcomputer.

Tre 8086 instructions support two types of interrupts,
external and internal (or "trap"). An external interrupt is
initiated by some peripheral asserting an interrupt request
to the 8086 in the hardware. An internal interrupt is one
initiated by the software the 8086 is executing. An inter-
rupt represents a transfer of program execution control. The
type of transfer used in the 8086 is called a vectored
interrupt. An interrupt vector represents an address of a
procedure which services the interrupt.

In the 8086 all interrupts (both external and
internal) perform a transfer by pushing the flag registers
onto the stack (as in PUSHF), and then performing an indirect
call (of the intersegment variety) through an element of an
interrupt vector located at absolute memory locations 0 through
3FFH. Each vector is a four byte element with the first two
bytes containing the offset of a procedure (or label) and the
second two bytes containing the paragraph number of the

segment containing the procedure (or label). There are 256
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possible interrupt vectors. Within the 8086 assembly
language, each vector is given a number from 0 through 255.
Interrupts 0 through 4 (0-13H) currently have the dedicated
hardware functions as defined on Figure 29 below (the dedica-

tion has been made by INTEL Corporation).

Interrupt # Location Function
0 0-03H divide by zero
1 04H-07H single step
2 08H-0QBH non-maskable interrupt
3 OCH-OFH one byte interrupt

instruction (INT 3)

4 10H-13H interrupt on overflow

FIGURE 29. INTERRUPTS 0 to 4.

There are three interrupt transfer operations provided:

- INT pushes the flag registers, clears the TF (Trap Flaqg)
and IF (Interrupt Flag) flags, and transfers control
with an indirect call through any of the 256 vector
elements, i.e., INT 24 will do an indirect call
through interrupt vector 24 (location 96). A one byte
form of this instruction is available for interrupt
type 3, INT 3. We use INT instruction for the
implementation of the "GATE".

~ INTO pushes the flag registers, clears the TF and 1IF

flags and transfers control through vector element 4
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if the OF flag is set (interrupt on overflow). If
the OF flag is cleared, then no operation takes place.

- IRET transfers control to the return address saved by
a previous interrupt operation and restores the saved
flag registers. This instruction is used several

times for the implementation of the operating system.

For external interrupts, the peripheral device will request
an interrupt from the 8086. When the 8086 grants the inter-
rupt, the device will supply a byte value on the data bus
which represents the type or number of the interrupt i.e.,

0 through 255. The 8086 will read this value and then
execute the interrupt through the vector.

2. Hardware Interrupts

The 8086 CPU includes two hardware interrupt inputs,
NMI and INTR, classified as non-maskable and maskable,
respectively.

a. Non-Maskable Interrupt (NMI)

The NIM input has the higher priority of the two
interrupt inputs. A low-to-high transition on the NMI input
will be serviced at the end of the current instruction or
between whole moves of a block-type instruction. Worst-case
regsponse to NMI is during a multiply, divide, or variable
shift instruction.

When the NMI input goes active, the CPU performs

the following:
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(1)

(2)

(3)

Pushes the Flag registers onto the stack
(same as a PUSHF instruction).

If not already clear, clears the Interrupt
Flag (same as a CLI instruction). This
disables maskable interrupts.

Transfers control with an indirect call
through vector location 00008.

The NMI input is intended only for catastrophic

error handling such as a system power failure. Upon

completion of the service routine, the CPU automatically

restores the flags and returns to the main program.

b. Maskable Interrupt (INTR)

The INTR input has the lower priority of the two

interrupt inputs.

A high level on the INTR input will be

serviced at the end of the current instruction or at the end

of the whole move for a block-type instruction.

When INTR goes active, the CPU performs the

following (assuming the Interrupt Flag is set):

(1)

(2)

(3)

(4)

(5)

Issues two acknowledge signals. Upon receipt
of the second acknowledge signal, the
interrupting device (master or slave PIC)
will respond with a one-byte interrupt
identifier.

Pushes the Flag registers onto the stack
(same as a PUSHF instruction).

Clears the Interrupt Flag thereby disabling
further maskable interrupts.

Multiplies by four (4) the binary value (X)
contained in the one-byte identifier from
the interrupting device.

Transfers control with an indirect call
through location 4X.
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Upon completion of the service routine, the CPU
’ automatically restores its flags and returns to the main
program.

3. 8259A PIC (Programmable Interrupt Controller)

The on board 82592 PIC functions as an overall
manager in an interrupt-driven system environment. It accepts
requests from the peripheral equipment, determines which of
the incoming requests is of the highest importance (priority),
ascertains whether the incoming request has a higher priority
value than the level currently being serviced and may issue

, an interrupt to the CPU based on this determination.

The on board master 8259A PIC handles up to eight
vectored priority interrupts and has the capability of
expanding the number of priority interrupts by cascading
one or more of its interrupt input lines with slave 82592

PIC's. Note that slave PIC's are not used in this

implementation.

The basic functions of the PIC are to (1) resolve the

priority of interrupt requests, (2) issue a single interrupt
request to the CPU based on that priority, and (3) send the
CPU a vectored restart address for servicing the interrupting
device.
a. Interrupt Priority Modes
The PIC can be programmed to operate in one of

the following modes:
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(1) Nested Mode

(2) Fully Nested Mode

(3) Automatic Rotating Mode

(4) Specific Rotating Mode

(5) Special Mask Mode

(6) Poll Mode

In this design the Nested Mode is used and is
described in the next paragraph.

b. Nested Mode

In this mode the PIC input signals are assigned
a priority from 0 through 7. The PIC operates in this mode
unless specifically programmed otherwise. Interrupt IR0 has
the highest priority and IR7 has the lowest priority. When
an interrupt is acknowledged, the highest priority request
is available to the CPU. Lower priority interrupts are
inhibited, higher priority interrupts will be able to
generate an interrupt that will be acknowledged, if the CPU
has enabled its own interrupt input through software. The
End-0Of-Interrupt (EQI) command from the CPU is required to
reset the PIC for the next interrupt.

Details for the remaining modes are described in
Reference ([2].

c. Status Read
Interrupt request inputs are handled by the

following three internal PIC registers:
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(1) Interrupt Request Register (IRR) which
stores all interrupt levels that are
requesting service.

(2) In-Service Register (ISR) which stores all
interrupt levels that are being serviced.

(3) Interrupt Mask Register (IMR) which stores
the interrupt request lines which are masked.

These registers can be read by writing a suitable

command word and then performing a read operation.
d. Initialization Command Words

The on board master PIC and each slave PIC
requires a separate initialization sequence to work in a
particular mode. The initialization sequence requires three
Initialization Command Words (ICW's) for a signle PIC system
and requires four ICW's for a master PIC with one to eight
slaves. The ICW formats are shown in Figure 30. Since no
slave PIC's are used we shall describe below only the
initialization command words needed to initialize the
on board PIC.

The First Initialization Command Word (ICW1l),
which is required in all modes of operation consits of the
following:

(1) Bits 0 and 4 are both 1's and identify the
word as ICW1 for an 8086 CPU operation.

(2) Bit 1 denotes whether or not the PIC is
employed in a multiple PIC configuration.
For a single master PIC configuration
(no slaves) bit 1l=1; for a master with
one or more slaves bit 1=0. Note that
bit 1=0 only when programming a slave PIC.
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[37170 lO 1 ]iTIMI 0 S [1 l

— 0 - NOT SINGLE
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1 - LEVEL TRIGGERED INPUT
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LEVEL
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# | OF VECTORING BYTE

(ﬁ 0 0 M1BUF M/S}AEO]f 1

1 AUTO EOl
0 - NORMAL EO1

NON BUFFERED MODE
BUFFRED MODE/SLAVE
BUFFERED MODE/MASTER

[
1

FULLY NESTED MODE
NOT FULLY NESTED MODE

& < [’ -[
H
O X

o
]

NOTE: X INDICATED "DON'T CARE"

FIGURE 30. PIC INITIALIZATION COMMAND WORD FORMATS
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(3) Bit 3 establishes whether the interrupts

are requested by a positive-true level input
’ or requested by a low-to-high input. This

applies to all input requests handled by
the PIC. In other words, if bit 3=1, a
low-to-high transition is required to request
an interrupt on any of the eight levels
handled by the PIC.

The second Initialization Command Word (ICW2)
represents the vectoring byte (identifier) and is required
by the 8086 CPU during interrupt processing. ICW2 consists
of the following:

(1) Bits D3-D7 (All-Al5) represent the five most
significant bits of the vector byte. These
are supplied by the programmer.

(2) Bits D0-D2 represent the interrupt level
requesting service. These bits are provided
by the 8259A during interrupt processing.
These bits should be programmed as 0's when
initializing the PIC.

Note that the 8086 CPU multiplies the vector byte

by four. This value is then used by the CPU as the vector

address.

Figure 31 lists the vector byte contents for

interrupts IR0O-IR7.

D7 D6 DS D4 D3 D2 Dl DO
IR7 Al5 Al4 Al3 Al2 All 1 1 1
IR6 Al5 Al4 Al3 al2 All 1 1 0
IRS Al5 Al4 Al3 Al2 All 1 0 1
IR4 Al5 Al4 Al3 Al2 All 1 0 0
IR3 AlS Al4 Al3 All AlQ O 1 1
IR2 Al5 Al4 Al3 Al2 All O 1 0
IR) Al5 Al4 Al3 Al2 All O 0 1
IRO Al5 Al4 Al3 Al2 All O 0 0
{ FIGURE 31. INTERRUPT VECTOR BYTE.

’
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It is important here to notice that the monitor
of each microcomputer [21] initializes the PIC. For testing
this hardware configuration the interrupt line 4 is connected
and the interrupt vector byte (of Figure 31) is initialized
(just for this kernel program) to 40H. Note that the three
LSB bits (DO, D1, D2) are always initialized to 0. For the
specific initialization, bit D6=1 and all the rest are 0.
Since the interrupt line 4 is connected, the PIC upon
receiving an interrupt resolves the priority and sets the
bits D2=1, D1=0, DO0=0 (D2D1lD0=100=4). Therefore, the
interrupt vector byte is set to 40H+4=44H. The 8086 CPU
multiplies the interrupt vector byte by 4 and the resulting
value, 110H, is the vector address. The CPU will transfer
control to this address to execute the interrupt service
routine corresponding to the interrupt 4. A pointer (four
bytes) pointing to the starting point of the interrupt
service routine must be located in the physical absolute
address (110H) corresponding to the received interrupt.

Since both the monitor and the kernel initialize
the PIC there exists a probability of conflict as follows:
If the first 100 bytes of local RAM memory of every micro-
computer will be displayed using the monitor's display
command, as in Figure 32, then we can see that the monitor
uses 12 bytes (04 to OF). Also 32 bytes are occupied
(80H to 9FH) and these are pointers tota single entry point

(pointer 6C 06 00 FE is repeated 8 timesg). If the interrupt
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0000:0000 00 00 00 00 06 04 00 FE DB 0S5 00 FE DB 05 00 FE
0000:0010 00 00 00 GO 00 00 00 00 00 00 OC 00 00 OO0 00 coC
0000:0020 00 00 00 OC 0OC 00 CO 00O 0O 00 0O OO OO 00 0O OO0
0000:0030 00 00O 00 00O 00 00 OO0 00 00 OO 00 00 OC 00 OC 00
0000:0040 00 00O 00 OO OO0 OO0 00 OO OO0 OO0 00O 00 OO 00 0OC 00
0000:0050 00 00 00 OO OO 00 OO0 OO OO OO 00O 00O OO 00 OO OO0
0000:0060 00 00 00 00 OO OO0 OO0 OO OO0 00 00O 00 00 00 OO OO0
0000:0070 00 00 00O 00O OO0 OO0 00 OO0 00 00 OO 0O 0O 00 0O OO0
0000:0080 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE
0000:0090 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE
0000:00A0 00 00 OO 00 00 00 00 00O 00 00 00 0O OO OO 0OC OO
0000:0080 00 00 00O OO0 OC 00 00 OO0 00O 00 0O 00 OO OO 00 00
0000:00CO 00 00 OO0 00 00 00 00 00O OC 00 OO 00O OO Q0 00 OO0
0000:00D0 0C 00 00 OO0 00 00 O0C 00 0O OO OO OO 00 OO 00 OO0
0000:00E0 00 00 00 00 OC 00 OO0 00 0O OO0 0O 00O 0O 00 00 OO0

0000:00FO 00 00 00 00 OO0 00 00 00O OO0 00 OO OO 00 OO 00 00

)

5

FIGURE 32, DISPLAY OF THE FIRST 100H BYTES

134 ’ ﬁ




vector address, after the PIC initialization, happens to be
between 80H and 9FH the interrupt service routine pointer

is overwritten by the monitor. The solution is to substitute
(using monitors' "S" command) the service routine vector in
place of the monitor's interrupt service routine vector. For
example if we initialize the interrupt vector byte of Figure

31 with 20H and use interrupt line 4, then after CPU's
multiplication by 4, the resulting vector address is 24H*4=90H.
Before execution we have to substitute the four bytes 90H to
93H with the interrupt service routine pointer.

If we avoid the area (from 80H to 9FH) then there
is no problem. Also when the operating system (instead of
the monitor) wifi be tﬁe permanrent resident of ROM, this
probleﬁ will not exist. (See also Anderson's thesis [19]).

Now the PIC initialization is continued.

The third initialization command word, ICW3, is
not required for this implementation since we do not use
slave PIC's.

The fourth Initialization Command Word (ICW4),
which is required for all modes of operation, consists of

the following:

(1) Bit DO is a 1 to identify that the word is
for an 8086 CPU.

(2) Bit D1 (AEOI) programs the end-of-interrupt
function. Code bit 1=1 if an EOI is to be
automatically executed (hardware). Code
Bit 1=0 if an EOI command is to be generated
by software before returning from the ser-
vice routine.
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(3) Bit D2 (M/S) specifies if ICW4 is addressed
to a master PIC or a slave PIC. For example,
code bit 2=1 in ICW4 for the master PIC.

If bit D3 (BUF) is zero, bit D2 has no
function.

(4) Bit D3 (BUF) specifies whether the 8259A is
operating in the buffered or nonbuffered mode.
For example, code bit 3=1 for buffered mode.
The master PIC in an iSBC 86/12A, with or
without slaves, must be operated in the
buffered mode,

(5) Bit D4 (FNM) programs the nested or fully
nested mode.

In summary, three ICW's are required to initialize

the on board PIC in this implementation, ICWl, ICW2 and ICW4.
e. Operation Command Words

After being initialized, the master and slave
PIC's can be programmed at any time for various operating
modes. The Operation Command Word (OCW) formats are shown
in Figure3-15 of Reference (2]. The format of the only one
operation command word used in this implementation (OCWl) is

shown in Figure 33.

P, Dg Dg Dy Dy Dy Dy Dy
M7 | M6 | M5 | M4 [ M3 | M2 [ M1 [ M
J I L L L ﬂ INTERRUPT MASK
1 = MASK SET
0 = MASK RESET

FIGURE 33. OPERATION COMMAND WORD #1, (OCW 1)
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f. Addressing

The master PIC uses Port 00CO or 00C2 to write

initialization and operation command words and Port 00C4 or

00C6 to read status, poll and mask bytes. Addresses for the

specific functions are provided in Reference [2].

g. Initialization

To initialize the PIC the following steps must

be followed:

1.

2.

3.

Disable system interrupts by executing a CLI
(Clear Interrupt Flag) instruction.

Initialize master PIC by writing ICW's in
the following sequence:

Write ICW1l to Port 0CCO and ICW2 to
Port 00C2.

Write ICW4 1o Port 00C2.

Enable system interrupts by executing an
STI (Set Interrupt Flag) instruction.

h. Operation

After initialization, the master PIC and slave

PIC's can independently be programmed at any time by an

Operation Command Word (OCW) for the following operations:

(1)
(2)
(3)

(4)
(5)
(6)

Auto-rotating priority.
Specific rotating priority.

Status read of Interrupt Request Register
(IRR) .

Status read of In-Service Register (ISR).
Interrupt mask bits are set, reset, or read.

Special mask mode set or reset.
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The details of these Operation Command Words are
described in Reference [2]. 1In this implementation, only the
OCW1l is used which has already been described.

4. B8255A PPI (Programmable Peripheral Interface)

The three parallel I/0 ports interfaced to connector
J1 of the 86/12A microcomputer are controlled by an INTEL
8255 Programmable Peripheral Interface chip. Port A includes
bidirectional data buffers and Ports B and C include IC
sockets for installation of either input terminators or out-
put drivers depending on the user's application.

Default jumpers set the Port A bidirectional data
buffers to the output mode. Optional jumpers allow the
bidirectional data buffers to be set to the input mode or
allow any one of the eight Port C bits to selectively set
the Port A bidirectional data buffers to the input or output
mode.

Reference [2] lists the various operating modes for the
three PPI parallel I/0 ports. Note that Port A (00C8) can
be operated in Modes 0, 1, or 2; Port B (00CA) can be
operated in Mode 0 or 1; Port C (00CC) can be operated in
Mode 0.

a. Control Word Format

The control word format shown in Figure 34 is
used to initialize the PPI in order to define the operating
mode of the three ports. Note that the ports are separated

into two groups. Group A (control word bits 3 through 6)
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defines the operating mode for Port A (00C8) and the upper
four bits of Port C (00CC). Group B (control word bits 0
through 2} defines the operating mode for Port B (00CA) and
the lower four bits of Port C (00CC). Bit 7 of the control
word controls the mode set flag.
b. Addressing
The PPI uses four consecutive even addresses
(00C8 through 00CE) for data transfer, obtaining the status
and control of the PPI at Port C (00CC).
c. Initialization
To initialize the PPI, a control word is written
to the port address 00CE. 1In Figure 34, an example is given
for the PPI initialization. 1In this example, the control
word is 92H. This initializes the PPI as follows:
(1) Mode Set Flag active
(2) Port A (00C8) set to Mode 0 Input
(3) Port C (00CC) upper set to Mode 0 Output
(4) Port B (00CA) set to Mode 0 Input
{5) Port C (00CC) lower set to Mode 0 Output
d. Operation
After the PPI has been initialized, the operation
is completed by simply performing a read or a write to the
appropriate port.

5. The Actual Configuration

a. Hardware Connections
The hardware connections to implement this hardware

adaptation are marked with special comments in the following
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CONTROL WORD

D D

4| D3] D2 P |D

|

GROUP B
PORT C (LOWERS;

N 1 = INPUT
’ 0 = OUTPUT
PORT B
— 1 = INPUT
| 0 = OUuTPUT
[~ MODE SELECTION |
R 0 = MODE 0
’ 1 = MODE 1
éff GROUP A
‘pdﬁﬁ‘é'(u??sﬁT‘ziﬁ
» | 1 = INPUT
0 = OUTPUT
“PORT A
1 = INPUT
¥ | 0 = OUTPUT
"MODE SELECTION
00 = MODE 0
% | 01 = MODE 1
1X = MODE 2

FIGURE 34.

PPI CONTROL WORD FORMAT
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Figures 36 and 37. In Figure 36 (This is the Figure 5-2, sheet
9 of 11, of Reference [2]) pin E9 is connected with pin E1l4.
This connection will connect PC7 (bit 7, e.g., the MSB of Port
"C") to the BUS INTR OUT. Port "C" and BUS INTR OUT line are
shown on Figure 35.

In Figure 37, (This is the Figure 5-2, sheet 8 of
11 of Reference {2]) pin E137 is connected with pin El142. This
connection will connect INTR 4 (interrupt 4 line) to the BUS
INTR OUT. Then pin E69 is connected with pin E77. This
connection will connect BUS INTR OUT to the IR4 (interrupt 4)
input of the 8259A PIC (Programmable Interrupt Controller), via
the Interrupt Matrix. INTR4, IR4 and Interrupt Matrix are
shown in Figure 35.

With the above three jumpers, we ccnnected the MSB
(bit 7) of Port "C" (of 8255A Programmable Peripheral Interface)
with IR4 (interrupt 4 input of the 8259A PIC). These connec-
tions have to be made on every 86/12A microcomputer in the
system.

We have to note here that interrupt line 4 is
selected arbitrarily. It is possible to connect a different
line or to connect parallel Port "A" or "B". We selected
"C" in order not to interfere with the operations of the
data ports "A" and "B".

b. Software Control
In order to receive an interrupt the 825%9A PIC has

to detect a "Low to Righ" transition in the corresponding input

141

b ® k.




WY¥OVIA DID0T QIIJITAWIS LANIYILNI dNVY INdLNO/LNdANI ¥ZT1/98 D8ST °Gf JUNOIJ

SINIT 8 HSJIHL

-
dO 3NO SI tdI 1LNo ¥INI Snd :

@0 s 400t

—1 11 79 et iOnEg H
o pEslraa
rmm ppprl £x2 i I
v MINI ”. I =3 m
84 save - ..-ﬂo.-z va {
XTUIVW \\ Gt -1 |
gdawar st - i— tad
LdNYYFLNT — S—
Lo ERTEN it 4
T 3
o14 \L — s /./ .
B
wdu I¥Od

“rew one

i pube RO T R -

# arr - T wwm T T T oo TTTm e
. ]

wopiesatgy o napdp ALy V2100 WY




WZIDVIA JDILYWAHOS LNO LANYYIINI Snd ‘Idd VSSZ8 *9¢ ANNOIJ

T
“1oh 1
[ T cren <y . by .
| . 3 %l
v R . wfr™ v
s
REFL v [ “ i [ R " U- 'H.mom —mo mmz
S . Ldd
(-7 _ - ® »
_ _\ ASrv e “ w~
1$s m\ 2]
e - L ) i
AT e -
3 1mos 3 TR0 4 94-w~
L S1K] |
. . —
. t"-ﬂ-ﬁ“ _| LA ls g “ ’.M .
P iiinecd - B SRR T T LI (v zov  wa
w : %3] e e S e {id == 1,
LN % 3 (2] rw 2we
Ocﬂiml.xhu" = - - e, {Rleowe v
v/ soweso S m e e — (39 oot cwe
-4 dve  sEYDLe - R e @9 /iro1  awe -
d s
@ate
it ® )
0w { T h b 4—
L TR ) T W
« - ~——%1
> ﬂ-n.."‘ -4 LITR & 1t wu Irdl 22 0au v ]
Sne  Bues v [ag) - -
2> Aps L ‘|-'m
“e ﬂﬂ
e - g% i
R e
e - - & - -
e
_ et A - ) —_
-t &V _
wrime § TN i =
amre 2 f
ni . e Idd
Al
-~ Alw LY At
e - RESE il A olow - il saoma e e
- * e L . * ;
e
"o ”s -
=33 1) - saiiing MIHsuH.HUIH..H— L
TRER05F T
T AR S T [ T v ¥ 3 T [ T Y T s
Boyrew snguy 8392 209 VEI/98 20

143

- i AP TIAIIT TN o a5 e




WIOVIA DILVWIHOS XIHIVW LANYYIAINI ‘DId ¥6GZ8 °“LE TMADIA
o1d

3 | | A W | | ) _\n N

v e wied w59 . - . i - 2
_._‘I <] reno LT
av>

orvnc ﬂvpal {ord wec s
N
. < J* cw‘ro..
TS RV winL w09 :cﬁ&ﬂ Jdoa ~_ ,~:
»
— _ o< ~ e WA .
! S A whe N i, 200
2 o 19 e Ol "
® 2w 0B) Wi RN 1] M 4 o n’ i
miswe ¥ bl e0r 4 3rws o .
PR TG T Y ] - n.?.«-n .P_EA - _ e
P ~ay : Ly -
am.‘ﬁk voom Wy -_.nm — {m] mwvem G
4 - o %.—u. .!Tmm CRATL SR LY
q 2
~ al o g
Zwas  wav Qaw , ) T @aw OM e g
ﬁ 11X
2na BNt 199) e T T sdeod - - —_— e - mﬂln
b
-
1t 190 -9 [T
-~ = 7ar0l v
7. 2mO2 L.
ver wm
mIw
o
Qs BanI w3 *Q} mw e " Vied T T T » e ie PBINT
o
5 v panIws MY & —my oma - P Iv i@ 730and
- had emi rea e rrmAN
o
£ Seiem rovie suminr
-~ Sald TTITTTR.  <ms
o ! [ V.
2we 1N ) ﬂJ—l o 1814 TOEIRY
cov
] e a0 B B e o .- - - vosiee 8 1 2 P4 sNminT
ws  BnE oo [T 3 = Oo 919 sAWANT
. & <o
oy
Lo B Pavu US| - e Yo Cvatd ‘G 1d /LMY
g G
e vesin
XIY.LVIWN w? W.-\F— [ ST TG gel
e vev ¢ DanINNe  Awg
a mm&z:n Ol manz v e
v ve
LdOYYILNI N s 1
? FNO 29N AT
coma]m el 7 e T Sl
1 | e | — ¢ — 14 t £ — ® IM [] — []

wopewIo U] BIAssg VEI/00 DA

144

- : "



(IR 4 in our case). Since we already have connected PC7 (MSB
of Port "C") with the interrupt line 4, we only need to "Reset-~
Set" that MSB by writing a byte into the Parallel

Port "C" (specifically to port address "00CC").

Since the Port "C" is an eight bit port, to reset
the MSB (PC7) we can write to Port "00CC" any number from 0 to
79H (MSB equal 0). To set the MSB we can write any number
from 80H to OFFH (MSB equal 1).

We also use a "global" array of flags, called in
the implementatién HDWSINTSFLAG (Hardware Interrupt Flag).
HDWSINTSFLAG (n) corresponds to the processor whose identifica-
tion number (CPUSNUMBER) equals n. Since this flag array is
global, each physical processor can access the flag of any
other processor in the system.

This way we establish an effective and simple
design and implementation of the "inter-physical processor
communication" using just "one" hardware interrupt line. The
algorithm is shown in Figure 38. When a processor #n needs
to preempt another processor #m, then it first set its
corresponding flag, e.g., HDWSINTSFLAG(m) = TRUE and after-
wards sends a hardware interrupt by writing to Port address
"00CC" first a zero, then an 80H and finally a zero. This
way processor #n generates the "Low to High" transition at
the interrupt 4 input (IR 4) of the 8259A PIC of "every"
86/12A microcomputer (including itself) in the system. Then
every processor jumps to the interrupt handler that first
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WHEN PROCESSOR #n NEEDS TO PREEMPT PROCESSOR #m

~

SETS HDWS INT$FLAG (m) = TRUE

JL

SENDS ACTUALLY A HARDWARE INTERRUPT AS FOLLOWS:

RESET A "LOW TO HIGH"

OUTPUT (PORTSOOCC)

TRANSITION FOR IR4

QUTPUT (PORTS$SOOCC)
OUTPUT (PORT$OOCC)

RESET

SET (TRIGGERED MODE IS USED)

|

EACH ONE PROCESSOR JUMPS TO THE INTERRUPT HANDLER AND

ASKS ITSELF THE QUESTION:

IF

v

1. SAVES EXECUTION POINT
OF PREVIOQOUS TASK.
2. RESETS ITS OWN FLAG.

CONTINUES ON
PREVIOUS TASK

3. CONTINUES ON THE
INTERRUPT SERVICE
ROUTINE.

FIGURE 38. PREEMPTIVE HARDWARE INTERRUPT ALGORITHM
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checks its own HDWSINTSFLAG. If the flag is not set, the
processor continues on the previous task by using the IRET
instruction. Otherwise, if the interrupt was destined for
it, this processor saves the execution point of the previous
task, resets its HDWSINTSFLAG and then continues on the

interrupt service routine.

H. SYSTEM-WIDE DATABASES

The operating system is "database" or "control table"
driven. There are several shared databases (shared segments)
that reside in the global memory where any processor can
access them to maintain and update the shared control data
used by the operating system.

1. vVirtual Processor Map (VPM)

The Inner Traffic Controller is the physical resource
manager, The VPM is the principal global data base that
maintains and updates the data used by the ITC to multiplex
virtual processors among real processors and to create the
extended instruction set that controls the virtual processor
operation. The VPM is a system wide database and is kept in
global memory (as a shared segment) to facilitate inter-
virtual processor communication and synchronization.

Each physical processor has its own fixed set of
virtual processors (four in the current implementation) used

in multiplexing. See Figure 39. The first and fourth VP

(VPSSTART and VPSEND) are invisible to the TC level (invisible

to the user processes) and are permanently bound to the memory
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USER USER
PROCESS PROCESS
Y Yy
TC
_ | _MEMORY LEVEL IDLE
MANAGEMENT T — — | — — — T[T T T T PROCESS
PROCESS 1TC
LEVEL
?
>
VIRTUAL VIRTUAL VIRTUAL VIRTUAL
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
$1 $I+1 §I+2 #K=I+3
(I=VPS$ START) (K=VP$ EN1)

Y,

PROCESSOR
#n

n = CPUSNUMBER = LOG$CPUSNUMBER

BARE
MACHINE

FIGURE 39. EACH REAL PROCESSOR POSSESSES FOUR VIRTUAL PROCESSORS
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management process and idle process respectively. The VPS$START
has the highest priority (0 in this implementation) and the
VPSEND the lowest (255 or FFH). The remaining two have
priority equal to the priority of the user processes bound

to them. 1In this way the ITC recognizes that each real
processor possesses four VP while the TC recognizes only

two VP per real processor. A virtual processor mapping

among the TC and ITC is needed to support this different VP
view.

It is important to understand that this VP multi-
plexing among physical processors is an economic way for using
the physical processor and physical resources in general. For
example, by binding permanently the MMGT (Memory Management
process) to a VP and assigning to this VP (VPS$START) the
highest priority, the MMGT process will occupy (run on)
the physical processor each time there is reason (e.g., when
some system event happens that requires a response by the
MMGT). Otherwise another VP runs on this physical processor
either the idle process or a user process. On the other
hand if a real processor was permanently bound to the MMGT
process, this physical resource would be idle whenever the
MMGT process has nothing to do.

It is also important to note that the ITC
executing on a physical processor is primarily concerned
only with its set of the four VP. However, the performance
of system-wide synchronization requires access to the remaining
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virtual processors as well, so that signals may be used to
alert other physical processors (we have discussed already
the case of preemptive scheduling). This is accomplished by
maintaining the Virtual Processor Map as a shared data base
containing entries for all of the virtual processors in the
system. Making it globally available facilitates communica-
tion between virtual processors on a system-wide scale. The
Virtual Processor Map fields are shown in Figure 40.

The VPM INDEX starts from 0 to the value NRSRPS

* VPSSPERSCPU-], viz., number of real processors in the

system multiplied by the number of virtual processors per real

processor (four in current implementation) minus 1. This VPM
INDEX represents a whole entry into VPM (a horizontal line in
Figure 40). For example, VPM(0) represents the first entry
(horizontal line), VPM(1l) the second and so on.

The VPS$ID field is used to support the VP mapping
between the TC and ITC. Details will be discussed in para-
graph I8 of this chapter..

The VPSSTATE (virtual processor state) field
reflects the present state of the virtual processor and can

be any of "ready", "running”, "waiting"”, or "idle". A ready

virtual processor is bound to a process and is in "contention"

for the physical processor. The running virtual processor is
that virtual processor which is actually executing a process
on this physical processor. The waiting state¢ reflects

physical resource management. The idle state is assumed by
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a virtual processor which has no process bound to it. The
idle state prevents the assignment of useless (idle) work to
a physical processor. Figure 8 illustrates the state transi-
tions made by the virtual processors. In paragraph C7b of
Chapter II the possible transitions of state for a VP are
described.

The VPSPRIORITY (virtual processor priority) field
of the virtual processor is used in scheduling. The highest
priority runnable virtual processor is selected to run. This
priority is determined by the priority of the process bound to
the virtual processor. The VPSSTART, which is permanently
bound to the MMGT process has the highest priority (zero) and
the VPSSEND the lowest priority (255 or FFH).

The EVCSAWSID (Awaited Eventcount Identifier) and
EVCSAWSVALUE (Eventcount's waited value) fields are used in
Inter-virtual processor communication and synchronization.
Details will be discussed in the ITCSAWAIT and ITCSADVANCE
modules of the ITC later on in this chapter.

The SSSREG (Stack Segment Register Value) field
defines the address space of the process bound to this VP.

It holds the "process address space descriptor" (analogous to
DBR in MULTICS). The execution point of the process is stored
on the stack when the process is not actually running. This
SSSREG is the only value which is required to access the
address space of the process, viz., it is changed to swap

processes.
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The PESPEND (Preempt Pending Flag) field is used
for preemptive scheduling. It serves to transform a hardware
interrupt sent to the physical process into a virtual preempt
interrupt.

2. Active Process Table (APT)

The Traffic Controller multiplexes user (or applica-~
tion) processes among virtual processors. In this way the TC
is responsible to manage the execution of user processes
("processes management"). It is noted, one more time, that
since the processes are assigned to virtual processors (and
not real processors), there is no effect on the user when
real processors are added or deleted in the system, except,
of course, for the change in performance. Most of the
design and implementation, presented to the user, are inde-
pendent of the physical configuration of the system,

The Traffic Controller's principal global data base
is the Active Process Table (APT), shown in Figure 41. The
entry for each process in the Active Process Table contains
sufficient information about the process to enable a virtual
processor to be bound to and execute it.

The APT INDEX starts from zerc and grows as far as

processes are loaded in the system. For example, the APT(Q)

represents the first entry (horizontal line) in the APT, APT(1l)

the second and so on.
The STATE field represents the state of a process and

it can be either "ready", "running”, or "blocked". A ready
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process is one which is not yet bound to a virtual processor
but is ready to do so (it is in "contention" for VP). A
running process is one which is bound to a virtual processor
and, as far as the process is concerned, executing. The
blocked state reflects inter-process synchronization. A pro-
cess enters the blocked state when it realizes that it can no
longer proceed and wishes to "give up" its virtual processor
to wait until another process awakens it. This is important
for the economic advantage of virtual processor multiplexing
algorithm, viz., a process which can no longer run, waiting
for the occurrence of an event frees the virtual processor
which was bound to this process. The possible states of a
process and the transitions among them are shown in Figure 7
and explained in paragraph C7a of Chapter II.

The AFFINITY field specifies the physical processor
on which the process is currently loaded. It is possible to
change this field during system "reconfiguration", Anderson
[19].

The VPS$ID (Identity Of Bound Virtual Processor) field
serves to identify the virtual processor, if any, that the
process is currently bound tc. It is noted that the user
processes are multiplexed among the two central virtual pro-
cessors of each real processor as shown in Figure 39. The VP
with identification number VP$START and VPSEND are invisible
to the TC and the user. The necessary mapping among VPS$ID of
the ITC and TC will be discussed in the ITCSRET$VPTC module

in paragraph I8 in this Chapter.
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The PRIORITY field specifies the priority of the process.
In this system, priorities range in value from 0 to 255, with a
priority of 0 being the highest. Wwhen a process is bound to a
VP, the VPS$SPRIORITY field of the VPM corresponding to this
specific VP, becomes equal to the PRIORITY field of the process.

The LOADSTHREAD (Loaded List Thread) field serves to
implement the "Loaded List" of the ready, running and blocked
processes. It contains a pointer to the next process in the
Active Process Table which is loaded on the same microcomputer
as this process. The meaning of this statement is that the
"loaded list", which is a "linked list", is kept updated "per
physical processor". A loaded process has its address
space in primary storage; therefore it may be scheduled
to run on a VP. In general, a process can be loaded on
only a single physical processor at a time, due to the
use of processor~-local memory. The loaded list is ordered
(sorted) by the priorities of the processes. Thus this
field contains either a pointer to a process whose priority
is less than or equal to that of this process or a nil
pointer (viz., the last process on this Loaded List).

The EVCSVALUESAW (Value of Eventcount Awaited) field
reflects the event for which the process has blocked itself.
It contains the value that the process is waiting for the
eventcount to reach. When this specific eventcount reaches
this value the process will awaken and its state will change
from "blocked" to "ready". The usefulness of this field will

156

e




1

—————— - —rt——

be better understood when describing the TC$AWAIT and TCSADVANCE

modules.

The THREAD (Block List Thread) field is used to imple-
ment the Blocked List. This is a "per eventcount" linked list
of processes which are waiting on the same eventcount.

The DBR (Address Space Descriptor) field contains the

process' address space descriptor. This is the identity of the

process' stack which contaixs execution point information. The

value used here is the base location in memory of the stack
segment, viz., the Stack Segment (SS) Register value. This
field is implemented exactly the same way as the SS$REG field
of the VPM.

Above we described that the LOADSTHREAD field is used
to implement a "per physical processor" linked list (the "load
list") of the ready, running, and blocked processes and also
that the THREAD field is used to implement a "per eventcount"
linked list of the blocked processes waiting this eventcount.
For better understanding of these statements we shall use an
example later on, in paragraph H6.

3. Eventcount Table (EVCSTABLE)

The Eventcount Table is also a global data base for
the TC level, as shown in Figure 42 and is used by the
inter-process synchronization mechanism.

The EVCSTABLE INDEX starts from zero and grows as

new events are added in the system by calls from the
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application processes. For example, the EVCSTABLE(O)
represents the first entry (horizontal line) in the EVCSTABLE,

EVCSTABLE(l) the second and so on.

EVC

TABLE EVC EVC APT
_________ INDEX NAME VALUE PTR
EVCSTABLE (0) 0
EVCSTABLE (1) 1
EVCSTABLE (2) 2
_________ ' 4

FIGURE 42. EVCSTABLE (EVENTCOUNT TABLE)

The EVC$SNAME (eventcount name) field is a character
array of six letters. The first five letters is the name given
to the specific event by the user and the last letter is a
delimiter (% is used). This name is used as the input argument
of the TCSAWAIT and TCSADVANCE operations.

The EVC$VALUE (Eventcount value) field holds the
current value of the eventcount. Each time a TC$SADVANCE oper-
ation is executed, this value is incremented by one. Each time
the TCSAWAIT or TCSADVANCE is invoked, a comparison is made

between this Eventcount current value and the awaited value to
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decide if the state of the process will remain blocked or
will be changed to ready.

The APTS$PTR (Active Process Table Pointer) field is
a pointer which points to the first member of the blocked
list (the "per eventcount" link list discussed in previous
paragraph) corresponding to this specific eventcount. The
usefulness of this pointer will be better understocd in the
example promised in previous paragraph.

This structure also uses the variable EVENTS with
initial value zero. The value of EVENTS is incremented by
one each time the TC$CREATESEVC (Traffic Controller Create
Eventcount) is invoked by an application process. In this
way the operating system keeps track how many events are
currently in use for inter-process synchronization and
communication.

4. Inner Traffic Controller Eventcount Table (ITCSEVCSTBL)

This is a global data base for the ITC level shown
in Figure 43 and is used by the inter-virtual processor
synchronization mechanism.

This table is a parallel structure with the previously

described EVCSTABLE. The differences are: the EVCSNAME

in this table is not a character array but just a number (0
to FFH). The reason is that this structure is invisible for
the user and therefore it is not necessary to spend execution
time to improve the "user interface" (viz., takes more time
when we search the EVCSTABLE to find an eventcount name

consisted of six characters).
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ITC EVC
TBL EVC EVC
INDEX NAME VALUE

———————— I A

ITCSEVCSTBL (0) 0 !

ITCSEVCSTBL (1) 1 !

________ L

ITCSEVCSTBL (2) 2 ﬂ

TABLE 43. ITCSEVCSTBL (INNER TRAFFIC CONTROLLER EVENTCOUNT
TABLE)

This structure also uses the variable ITCSEVENTS
(Inner Traffic Controller Events) to keep track of how many
events are currently in use in the ITC level, for inter-
virtual processor communication and synchronization.

5. System Configuration Data Segment (SCDS)

This is also a shared (global) segment containing
the following information:

NRSRPS (Number of Real Processors) provides the
information how many physical processors are currently used
in the system.

NRSVES (Number of Virtual Processors) provides the

number of virtual processors used in the system. It is
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noted that NR$VPS = NRSRPS * VPSSPERSCPU, e.g., the number
of virtual processors always equals to the number of real
processors multiplied by the number of virtual processors
per real processor, that is 4 in the current implementation.

The array HDWSINTSFLAG(n) (Hardware Interrupt Flag),
is used by the hardware interrupt mechanism for directing an
interrupt to a specific physical processor. Initially all
the members of this array are set to zero. The number of
these members is equal to NRSRPS (n = NRSRPS - 1l). There is
one-to-one mapping among HDWSINTSFLAG and CPUSNUMBER (or
LOGSCPUSNUMBER), e.g., HDWSINTSFLAG(m) corresponds to
CPUSNUMBER = m. The usefulness of these flags has already
been discussed in paragraph G of this chapter.

The array LOADSLIST(n) (Load List), is used in the
implementation of the linked list of the processes loaded to
each physical processor (The "Load List" discussed in the
previous paragraph 2, above APT). Initially all the members
of this array are set to zero. The number of these members
is again equal to NRSRPS (n = NRS$RPS -1). There is also one-
to-one mapping among LOADSLIST and CPUSNUMBER. LOADSLIST (m)
points to the currently highest priority process (independent
of whether this process is ready, running, or blocked)

loaded on the physical processor with CPUSNUMBER (or

LOG$SCPUSNUMBER) m.
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6. An Example for Loaded Lists and Blocked Lists

It is now feasible to present an example to illustrate

the interactions among LOADSTHREAD, THREAD, APTSPTR, and
LOADSLIST.

It is noted that it is important for the reader to
understand the following example before proceeding into the
details of the following paragraphs I (about the Inner
Traffic Controller) and especially K (about the Traffic
Controller).

Figure 44 illustrates the interactions for this
example. The APT, SCDS, and EVCSTABLE tables of Figure 44
do not show all their members but only the ones needed to
demonstrate the ideas. It is supposed that 11 processes
corresponding to APT(0) through APT(10) entries of the APT
have been loaded on three different physical processors with
AFFINITY (CPUSNUMBER or LOGSCPUSNUMBER) 0, 1 and 2.

Three linked "Loaded lists" are generated by the
operating system, one "per physical processor". These three
linked lists are sorted (ordered) by the priorities of the
loaded processes. For example, the LOADSLIST(l) of the
SCDS, corresponding to the physical processor with AFFINITY
= 1 (LOGSCPUSNUMBER = 1) points to the highest priority
process loaded on physical processor #l. It is shown in the
Figure 44, that LOADSLIST(l) = 2. The meaning is that the
LOADSLIST (1) (the header of this linked list) points to the

entry 2 of the APT (APT(2)). 1In entry 2 of the APT, there
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is loaded a process on physical processor #1 (AFFINITY = 1)
and its priority is 30. On the same processor are loaded
two more processes corresponding to the entries 5 and 9 of
the APT but their priorities are lower (66 and 40
respectively).

The LOADSTHREAD corresponding to APT(2) is equal
to 9. The meaning is that the next process loaded on this
physical processor #1 is in the entry 9 of the APT. 1Indeed
the AFFINITY of APT(9) is also equal 1, and its LOADSTHREAD
field is equal to 5. The meaning is that the next loaded
process on this physical processor is in entry 5 of the APT.
The LOADSTHREAD of APT(5) is equal to FF (the NIL pointer).
This means this is the last process (the lowest priority

process) loaded on physical processor #l. To summarize, we

have LOADSLIST(l) = 2 pointing to APT(2) which is the highest

priority process (with priority 30) loaded on this physical
processor. This process points to the entry 9 (it has
priority 40) and this second process in turn points to the
entry 5 which contains the third process (with priority 66)
and its LOADSTHREAD = FF meaning it is the last one in this
linked list.

Similarly, it is possible now to easily follow the
path of the remaining two loaded lists (the linked lists of
the processes loaded on physical processors #0 and #2).

It is also supposed that several of these processes

are in the blocked state waiting the cccurrence of some
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event. There exist three events in the EVCSTABLE with names
WMEGA, GAMMA, and DELTA. The processes corresponding to the
APT entries 5 and 10 are waiting for the occurrence of the
event WMEGA, the processes corresponding to the APT entries
2, 4, and 8 are waiting for the occurrence of the event
GAMMA and finally the processes corresponding to the APT
entries 1 and 7 are waiting for the occurrence of the event
DELTA.

Three linked "Blocked lists" are generated by the
operating system one "per eventcount". For example, the
APTSPTR corresponding to the EVC$SNAME WMEGA is equal to 10.
The meaning is that the EVCSTABLE (0) .APTS$PTR points to the
entry 10 of the APT and indeed this process is waiting the
occurrence of the event WMEGA. The THREAD field of the
APT(10) is equal to 5. The meaning is that the process in
APT(35) is also waiting the occurrence of the same event, and
finally the THREAD field of APT(5) is equal FF meaning that
there is no other process waiting the occurrence of the
event WMEGA. It is noted that these linked lists are per
eventcount and they link processes waiting the specific
event independent of the processor on which they are loaded.

Similarly it is possible now to follow easily the
path of the remaining two blocked lists corresponding to the

events GAMMA and DELTA.
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7. Locks Table (LOCKS)

This small global table consists only of the two
following bytes: APTSLOCK and VPMSLOCK (Active Process
Table Lock and Virtual Processor Map Lock). These two locks
are used to prevent race conditions when accessing the
shared data bases APT and VPM. The meaning and usefulness
of these locks have already been discussed.

8. Processor Data Segments (PRDS)

This segment doesn't contain system-wide {(global)
data but "local"” data, viz., data used for the specific
microcomputer on which this segment is loaded. There exist
a PRDS "per physical processor". This segment contains only

the structure shown in Figure 45.

DECLARE PRDS STRUCTURE

(CPUSNUMBER BYTE,
VPS$START BYTE,
VPSEND BYTE,
VPSSPERSCPU BYTE,
IDLESDBR WORD,
COUNTER WORD,
VIRTSINTSVECTOR POINTER,
HDWSINTSVECTOR POINTER)

FIGURE 45. PROCESSOR DATA SEGMENT STRUCTURE (PRDS STRUCTURE)
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The CPUSNUMBER (A "unique" identification number for
the specific physical processor) field, is assigned to each
physical processor during system initialization and is equal
to the LOGSCPUSNUMBER (Logical CPU number) passed as input
argument to the module ITCSINIT (Inner Traffic Controller
Initialization) which will be discussed in paragraph Ib of
this chapter. Aanderson [19] describes in his thesis the
details about system initialization.

The VP$START and VPSEND fields define the identifica-
tion number of the first and last virtual processor assigned
to the specific physical processor. For example, in this
implementation, the physical processor with identification
number CPUSNUMBER = 0 corresponds to VPSSTART = 0 and
VPSEND = 3, the physical processor with CPU$SNUMBER = 1
corresponds to VPSSTART = 4 and VPSEND = 7, and so on.

The VPSSPERSCPU (Virtual processors per CPU) field,
determines the number of virtual processors assigned to each
physical processor. In the current implementation this number
is fixed and equal to 4.

The IDLESDBR (Address space descriptor for the idle
process) field determines the address of the base of the Idle
Stack (IDLESSTACK) which is used by the Idle Process. Details
about this stack will be discussed in the ITC$INIT module in
paragraph Ib of this chapter.

The COUNTER field is a software counter. By contain-

ing this member in the PRDS structure, which is local to each
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microcomputer an array of software counters is automatically
generated with one-to-one correspondance to the physical
processors. These counters are initialized to zero, and
will be used to monitor the system's performance and the
effectiveness of the partitioning of the application programs.
Details will be discussed in paragraph Jb of this chapter.
VIRTSINTSVECTOR and HDWSINTSVECTOR (Virtual interrupt vector
and hardware interrupt vector) fields determine the address
where the CPU of the specific microcomputer has to transfer
the program control when it receives a virtual or a hardware
interrupt. When a CPU receives a virtual interrupt, it
transfers program control to the Traffic Controller Preemp-
tion Handler (TC$SPESHANDLER). This module will be described
in the paragraph K, later on in this chapter. When a CPU
receives a hardware interrupt, it transfers the program
control to the hardware interrupt handler of the Inner
Traffic Controller Scheduler (VPSCHEDULER). This module
will be discussed in the paragraph Ia, later on, in this
chapter.

9. Sequencer Table (SEQSTABLE)

This is a global data base for the TC level shown in
Figure 46 and is used by the inter-process synchronization
mechanism.

The SEQ$TABLE INDEX starts from zero and grows as
new sequencers are added to the system by the application

processes. For example, SEQSTABLE(0) represents the first
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entry (horizontal line) in the SEQSTABLE, SEQS$TABLE(l) the

second and so on.

SEQ

TABLE SEQ SEQ
_________ INDEX NAME VALUE
SEQ$TABLE (0) 0
SEQ$TABLE (1) 1
SEQSTABLE (2) 2

FIGURE 46. SEQSTABLE (SEQUENCER TABLE)

The SEQSNAME (Sequencer name) field is a character
array of six letters. The first five letters is the name
given to the specific sequencer by the user and the last
letter is a delimiter (% is used). This name is used as the
input argument of the TCSTICKET (Traffic Controller TICKET)
operation.

The SEQSVALUE (Sequencer value) field holds the
current value of the sequencer. Each time a TC$STICKET opera-
tion is executed on the specific sequencer this value is incre-

mented by one.
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This structure also uses the variable SEQUENCERS with
an initial value of zero. The value of SEQUENCERS is incre-
mented by one each time the TC$SCREATESSEQ (Traffic Controller
Create Sequencer) is invoked by an application process. 1In
this way the operating system keeps track of how many sequencers
are currently in use for inter-process communication and

synchronization.

I. THE INNER TRAFFIC CONTROLLER

The Inner Traffic Controller comprises the lower level of
processor multiplexing (Level 1 of this virtual machine). It
multiplexes physical processors among a fixed set (four in the
current implementation) of virtual processors. It provides
inter-virtual processor communication and synchronization,
supports the management of physical resources and manages the
system's interrupt structure.

The Inner Traffic Controller creates a set of four virtual
processors with the following etended instruction set:
ITCSAWAIT, ITC$SADVANCE, ITCSLOADS$VP, IDLESVP, ITCSSENDSPREEMPT,
and ITCSRETSVP. It also contains the internal routines
HARDWARESINT, LOCKVPM, UNLOCKVPM, CHECKSPREEMPT, RDYTHISVP and
SWAPDBR.

ITCSAWAIT and ITCSADVANCE (Inner Traffic Controller AWAIT
and ADVANCE) provide an inter-virtual processor synchronization
mechanism used within the kernel to provide multiprogramming. '
This multiprogramming is realized by invoking the scheduling

procedure GETWORK, of the ITC, which multiplexes these four
170

e T PP - - —




virtual processors on a physical processor. Which VP will
finally run on the physical processor is decided by the
VPSCHEDULER (Inner Traffic Controller Scheduler).

ITCSLOADSVP (Inner Traffic Controller Load Virtual Pro-
cessor) performs the "binding" of a new process to a virtual
processor. It is called by the TC$SCHEDULER (Traffic Control-
ler Scheduler) when a process has been selected for the VP.

IDLESVP (Idle this VP) is the ITCSLOADSVP's counterpart.
It is called by the TC$SCHEDULER in case that there exist no
runnable process for the VP. The virtual processor will be
idled (enter the "idle state”).

CHECKSPREEMPT and ITCSSENDSPREEMPT (Check for Pending
Preempt Interrupt and ITC Send Preempt Interrupt) create a
virtual processor interrupt mechanism. CHECK$PREEMPT, when
it is invoked within the ITC, checks the PESPEND (Preemption
Pending Flag) field of the VPM to determine if it is set or
reset for the specific VP. ITCSSENDSPREEMPT is invoked from
level 2 (TCSADVANCE) when the Traffic Controller desires to
load a new process on a virtual processor that is not
scheduled.

ITCSRETSVP (Inner Traffic Controller Return Virtual Pro-~
cessor's identification number), when it is invoked, provides
the information which VP is currently scheduled (running) on
the physical processor. This identity is only valid so long
as the APT is locked. The identity of a particular VP must

be known in the virtual environment, just as the identity of
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a physical processor is required to be known in the multi-
processor system.

HARDWARESINT (hardware interrupt) is used within the ITC
to send a hardware interrupt from one physical processor
to another. The purpose is to support preemptive scheduling
needed in the real-time processing.

LOCKVPM and UNLOCKVPM (Lock and Unlock the Virtual pro-
cessor map) are used to set or reset a software lock on the
shared (global) VPM data base to assure there are no race
conditions.

RDYTHISVP (Ready this VP) is used to change the state of
the currently "running" VP to "ready".

SWAPDBR (Swap DBR) is a function within the Inner
Traffic Controller Scheduler and is used to change the
address space when a new process is scheduled to run when
the previous process has been completed or blocked.

The details of the Inner Traffic Controller modules will
be discussed below:

1. Virtual Processor Scheduler (VPSCHEDULER)

This module is responsible for making the scheduling
decisions for virtual processors. It selects the highest
priority virtual processor from the set of four virtual
processors assigned to the physical processor and schedules
it. There are two distinct entry points to the VPSCHEDULER,

the normal entry and the interrupt entry.
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The normal entry point is used by other Inner
Traffic Controller modules to activate VPSCHEDULER when a
virtual processor gives up the physical processor on its
own. The preempt interrupt entry point is used in response
to a hardware preempt interrupt from another physical
processor.

VPSCHEDULER next searches through the fixed set of
virtual processors for the highest priority "eligible"
virtual processor. In this implementation the definition of
eligible includes not only a ready VP but also the combina-
tion of an idle state and a pending virtual preempt interrupt.
This allows an idle virtual processor to run so that it may
field the interrupt and bind itself to a new process. The
idle process that was bound to the virtual processor was
essentially useless up to this point. It now provides an
address space in which the virtual processor can execute
when binding to a new process.

Having selected some eligible virtual processor, the
VPSCHEDULER proceeds to bind the selected virtual processor
to the physical processor. 1I* - ec ., ' by unbinding the
currently running virtual processor. In doing so, the Stack
Pointer Register (SP) value, and the Base Pointer Register
(BP) value are saved in known locations on the process'
stack. The process' execution state (point) had already

been saved.
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Binding the selected virtual processor is begun by
changing the Stack Segment (SS) Register value to that of
the selected virtual processor. Once this change has been
made, execution has actually swapped to the new process
address space. Binding is completed by retrieving the
previously saved stack Pointer Register value and the Base
Pointer Register value from the newly acquired stack.

The last step is to actually return to the proper
place in the VPSCHEDULER. If a preempt interrupt invoked
VPSCHEDULER, an interrupt return will be executed and
CHECKPREEMPT will see if a virtual preempt interrupt is
pending. If a preempt interrupt is found to be pending, the
program control will be transferred to the location specified
by PRDS.VIRTSINTSVECTOR (viz., to the Traffic Controller's
preempt handler).

There is one other internal module for the Virtual
Processor Scheduler, the hardware interrupt handler. It is
used to handle hardware preempt interrupts. The program
control is transferred in this module each time the HARD-
WARESINT module of the ITC is invoked. Details about the
hardware preempt interrupt mechanism have already been
discussed in the paragraph G of this Chapter. (For the
algorithm see Figure 38).

2. ITCSINIT (Inner Traffic Controller Initialization)

This module together with the following KERNELS$SINIT

perform part of the system initialization by initializing the
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stack of the Idle Process and also the stack of the Memory
Management Process. These two system processes run concept-
ually between the TC and ITC levels as shown in Figures 5 and
9. These two processes are scheduled by the VPSCHEDULER
(the ITC scheduler), and are "invisible" to the TC$SCHEDULER
(generally to the TC level). That means there is no entry
into the APT (Active Process Table) for these two processes.
Also the stack initialization for these processes is differ-
ent from the corresponding initialization of an application
process stack. Details about these two system processes
will be discussed after the completion of the ITC level.

This module just calls the KERNELSINIT module and
then calls the VPSCHEDULER that schedules the highest priority
virtual processor (VP #0) to run. VP #0 is permanently bound
to the Memory Management Process.

ITCSINIT accepts two input arguments, CPUSNUMBER (that
is equal to the LOGSCPU$NUMBER, logical CPU number) and
PHYSSCPUSNUMBER (physical CPU number). These two arguments
LOGSCPUSNUMBER and PHYSS$CPUSNUMBER are given values during
the system initialization {19].

ITCSINIT is the entry point for the distributed oper-
ating system.

3. KERNELSINIT (Kernel Initialization)

This module is called only by the ITCSINIT and is
executed by each processor once during the system

initialization. It declares the IDLESSTACK and MGMTS$STACK

175




R -

R i
(Idle Process Stack and Memory Management Stack respectively)
' as based structures. It then initializes these two stacks by
initializing the header of the stack and the register's
array and then initializing the maximum stack length, and
- the process' initial code segment (CS) register, instruction

pointer (IP) register and the flags. (See Figure 22).
Then the program control returns into ITCS$SINIT
module.

4. GETSCOUNTER (Get Current Value of COUNTER)

This is just a "utility function" called only by the
Idle Process. It gets the current value of the counter

(which is a member of the PRDS, (see Figure 45)) and returns

that value to the Idle Process.

5. UPDATESCOUNTER (Upd te the Value of COUNTER)

This is also a "utility function” called only by the
Idle Process and has the purpose to update (increment by
one) the current value of the COUNTER. The usefulness of
these two utility functions will be discussed when describ-
ing the Idle Process.

6. GETSCURRENTSDBR (Get Current DBR)

This is also a "utility function" and is called only
by the VPSCHEDULER. When making an implicit call to the
ITCSRETSVP (discussed below), it finds the identity (VP
number) of the currently running virtual processor and then
finds and returns the content of the Stack Segment (SS)

register, corresponding to the specific running VP. Recall
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that the SS register is used in this design in a manner
analogous to the DBR in the MULTICS system. This D3R
value is used by the VPSCHEDULER to identify the right
address space and continue execution after receiving a
hardware interrupt.

We note here that each time a module returns a func-
tion value, this value in PL/M-86 always goes into the
accumulator (AX) register.

7. ITCSRETSVP (Inner Traffic Controller Return VP Number)

This is also a "utility function" used by the Inner
Traffic Controller and Traffic Controller modules. ITCSRETSVP
searches the Virtual Processor Map and determines the identity
of the virtual processor that is currently running on the
physical processor. It simply checks for the virtual
processor among the virtual processors assigned to the
physical processor which is in the running state. ITCSRETSVP
then returns its result as a function value into the AX
{accumulator) register. It will return either the identity
of the virtual processor (the virtual processor's index in
the Virtual Processor Map) or a "not found" error code.

8. ITCSRETSVPTC (ITC Return VP number for TC)

It is a "utility function" which is used to perform
the VP mapping between the TC and ITC levels as already
mentioned in paragraphs H1l and H2 (about VPS$ID Field) of

this Chapter.
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All the four VP's in the Figure 39 are visible to
the ITC. The two central VP's are visible to the TC while
VPSSTART and VPSEND are invisible. The user processes are
multiplexed among these two central VP's of each physical
processor.

The ITCSRETSVPTC when called by the TC, it calls in
turn the ITC$RETSVP to obtain the currently running VP (its
index in VPM). It then performs the mapping shown in Figure
47, and finally returns the corresponding VP identification
number for the TC (VPSID in Figure 47).

9. ITCSLOADSVP (Inner Traffic Controller Load Virtual
Processor)

This module performs the "binding" of a new process
to a virtual processor. It is called by the Traffic Controller
Scheduler (TCSFCHEDULER) when a process has been selected for
the virtﬁal processor. LOADSVP requires two input parameters,
the priority of the new process and the address space descriptor
{the Stack Segment Register value). It then swaps in the new
process onto the virtual processor which is currently running.
ITCSLOADSVP only operates on the virtual processor which is
running on the physical processor.

Binding is accomplished by updating the Virtual Pro-
cessor Map. The Inner Traffic Controller utility function
ITCSRETSVP is used to obtain the identity of the running
virtual processor. When complete, the virtual processor will

have a new priority and process address space descriptor
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AFFINITY|
VPM INDEX OR VPSID
VPM (n) PRDS .
CPUSNUMBER
0 (VPSSTART FOR RP #0) FF
1 0 0
2 1
3 (VPSEND FOR RP #0) FF
4 (VPSSTART FOR RP #1) FF
S 2
6 1 3
7 (VPSEND FOR RP #1) FF
8 (VPSSTART FOR RP #2) FF
9 2 4
10 5
11 (VPSEND FOR RP #2) FF
FF INVISIBLE FOR TC
RP REAI, PROCESSOR
MAPPING:
VPSID = (VPM INDEX) - (PRDS.CPUSNUMBER * 2 + 1)

FIGURE 47. VIRTUAL PROCESSOR MAPPING BETWEEN ITC AND TC
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(corresponding to the priority and address space of the pro-
cess just bound to it). ITCSLOADSVP completes by calling
VPSCHEDULER to reschedule the virtual processor.

10. IDLESVP (Idle this Virtual Processor)

This function is ITCSLOADSVP's counterpart. It is
called by the TC$SCHEDULER (Traffic Controller Scheduler) in
the event that a runnable process is not found for the virtual
processor. In this case the virtual processor will be idled
{(enter the idle state) and the Idle Process will be bound to
it. In the Virtual Processor Map, the virtual processor's
state will be marked as idle, the address space descriptor
for the Idle Process will be entered in the Address Space of
Bound Process field. The idle state ensures that the idle
process is not actually run by taking the virtual processor
entirely out of contention for the physical processor, with
which this virtual processor is associated.

At some later point, the virtual processor may be
placed back in "contention" for resources. This will occur
when the virtual processor is "preempted". With the combina-
tion of an "idle state" and a "pending preempt", the virtual
processor is treated the same way as a "ready" virtual proces-
sor (We shall clarify that statement when describing the
GETWORK module). This allows the virtual processor to keep
busy by expediting its binding to a process.

Lastly IDLESVP calls VPS$SSCHEDULER in order to "give

up" the physical processor.
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11. CHECKS$PREEMPT (Check for Pending Preempt Interrupt)

This module is called by the VPSCHEDULER during the
execution of a "virtual interrupt return". It checks for a
pending preempt interrupt meant for the virtual processor,
which has been selected to run (the running VP) by the
VPSCHEDULER. To accomplish this it checks the virtual
processor's "preempt pending flag" (PESPEND) in the VPM
(Virtual Processor Map). If the preempt pending flag is set,
the CHECKSPREEMPT will reset it and return the found value
(flag "on" or "down") to the VPSCHEDULER. In this way the
VPSCHEDULER is informed about the state of PESPEND flag and
it will use this information to decide which VP will run
(see GETWORK module below).

12. GETWORK

It is a function call. 1Initially it sets its local
variable PRI (Priority) equal to the lowest possible priority.
(In this implementation, the lowest priority is 255 and the
highest 1is 0) and SELECTEDS$DBR (selected address space)
equal to IDLESDBR (the address space for the idle process).

It then searches the VPM (Virtual Processor Map) to
find the highest priority, "eligible" to run, virtual processor.
In this implementation eligible to run for a virtual processor
means it is either in the "ready" state, or the "idle" state
with a "virtual preempt pending" (PESPEND is set).

Using the above criterion, GETWORK selects an eligible

processor, sets the SELECTED$DBR and PRI equal to the
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corresponding VPM values SS$REG and VPS$SPRIORITY respectively
for the selected VP, and then sets its state to "running"
and finally returns the SELECTEDSDBR into the Accumulator.

If after the above search no eligible VP is found,
it defaults SELECTEDSDBR = IDLESDBR and the idle process
will run.

13. ITCSSENDSPREEMPT (Inner Traffic Controller Send
Preempt Interrupt)

This module is responsible for actually sending pre-
empt interrupts. It is called by the Traffic Controller
Advance module. ITC$SSENDSPREEMPT requires two arguments, the
identity of the virtual processor which is to be preempted
and the identity of the physical processor to which that
virtual processor is associated.

It first locks the VPM (Virtual Processor Map) and
then sets the virtual processor's PESPEND (Preempt Pending
Flag). This is all that is done when the virtual processor
to be preempted is associated to the physical processor, which
is the transmitter (executing the ITC$SENDSPREEMPT module).
In other words, when the TGTSCPU (the input argument showing
the identity of the physical processor possessing the
virtual processor for which the virtual preempt interrupt is
destined) is equal to the CPUSNUMBER (the identity of the
physical processor executing ITC$SSEND$SPREEMPT) .

Otherwise, after setting the PESPEND the ITC$SENDS-

PREEMPT calls the HARDWARESINT procedure (see next paragraph)
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to generate a hardware interrupt for the physical processor
possessing the virtual processor to be preempted.

Finally the ITC$SENDSPREEMPT unlocks the VPM and
returns to the TCSADVANCE (the module responsible for pre-
emptive scheduling).

14. HARDWARESINT (Hardware Interrupt)

This procedure requires as its input argument the CPUS-

NUMBER, viz., the identity of the physical processor for which
the hardware interrupt is destined. HARDWARES$INT procedure
first sets the "global" hardware interrupt flag corresponding
to this physical processor (HDWSINTSFLAG(CPU)). It then

sends a hardware interrupt by outputting in the parallel

PORT "C", first a "0" then an "80H" and again a "0".

Finally the program control returns to the calling procedure.
The details about this hardware preempt interrupt already

have been discussed in paragraph G of this chapter. HARD-
WARESINT is called only by the ITC$SENDSPREEMPT and
ITCSADVANCE modules.

15. LOCKVPM (Lock Virtual Processor Map)

This small module uses a built-in PL/M-86 procedure
called LOCKSET which is an "indivisible test-and-set semap-
hore" to implement a software lock called LOCK$SVPM in the
VPM which is the central shared data base in the Inner
Traffic Controller Level (see Figure 9). Because this

global data base can be accessed (read and write capability)
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by all the virtual processors, this lock is used to prevent
"race conditions".

16. UNLOCKVPM (Unlock Virtual Processor Map)

This module is the counterpart of the above LOCKVPM.
Each time we have to access the VPM, we first lock the
VPMSLOCK. When the access task is finished, we have to
unlock this VPMSLOCK, so that another virtual processor can
access it.

17. RDYTHISVP (Ready this Virtual Processor)

This module first finds which Virtual Processor is
currently running by calling implicitly ITCSRETSVP and then
changes the state of this VP from "running" to "ready".

18. ITCSLOCATESEVC (Inner Traffic Controller Locate
Eventcount)

This is a utility function. It returns the index of an

ITC Eventcount in the ITC Eventcount Table (ITCSEVCSTBL). It
is called only by ITCSAWAIT and ITCSADVANCE described below.
The input argqument is the name of this ITC Eventcount. ITCS$-
LOCATLSEVC attempts to match the name given to it with one in
the ITCSEVCSTBL. If a match is found, it returns the index

to the calling procedure in the AX (Accumulator) Register as

a function value. Otherwise, it returns an error code.

19. ITCSAWAIT (Inner Traffic Controller AWAIT)

ITCSAWAIT is an inter-virtual processor synchroniza-
tion primitive. It is "invisible" (not accessible) to the

user processes and is used only by the operating system in
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the management of physical resources. It allows a virtual
processor to wait for the occurrence of an ITC Eventcount.

ITCSAWAIT expects two input arguments, the name of
the Eventcount and the value of the event to be awaited.

Upon invokation ITCSAWAIT locks the VPM. It then
finds first which Virtual Processor is running by making an
implicit call to the ITCS$RETSVP and then finds the index of
the Eventcount in the ITCSEVCSTBL by making an implicit call
to the ITCSLOCATESEVC. It then compares the current value
of the Eventcount, obtained from the ITCSEVCSTBL with the
value passed in the call. If the current value of the
Eventcount is found to be less than the value of the input
argument, then the virtual processor will enter the "waiting"
state and "gives up" the physical processor.

This change of the virtual processor's state from
"running" to "waiting" will be reflecﬁed in the VPM. The
input arguments will also be entered in the VPM in the
EVCSAWSID (Identity of the Awaited Eventcount) and the
EVCSAWSVALUE (Eventcount Awaited Value) fields.

Otherwise, if the current value of the Eventcount is
found to be equal or greater than the value of the input
argument, then the state of this virtual processor will be
changed from "running" to "ready".

Finally, in both cases the virtual processor will

give up the physical processor by calling the VPSCHEDULER,
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which will bind another (or possibly the samel) virtual
processor to this physical processor. Upon the return from

the VPSCHEDULER, the VPM will be unlocked.

20. ITCSADVANCE (Inner Traffic Controller ADVANCE)

ITCSADVANCE is an inter-virtual processor synchroniza-
tion primitive. It also is "invisible" to the user processes
and is used only by the operating system in the management of
the physical resources. It expects one input argument, the
name of the ITC Eventcount to be advanced.

Upon invocation, the VPM is locked. ITCSADVANCE then
finds which VP is running by making an implicit call to the
ITCSRETSVP to change the state of this VP from “running” to
"ready". It then finds the index of the Eventcount in the
ITCSEVCSTBL by making an implicit call to the ITCSLOCATESEVC,
and the eventcount's value in this table is incremented by
one.

ITCSADVANCE then compares this incremented value with
the events waited for by the other virtual processors which
are synchronizing on the same eventcount. All those virtual
processors whose Eventcount Awaited Value field (EVCSAWSVALUE)
in the VPM is less than or equal to the current value of the
eventcount are set to the "ready" state. This is the "broad-

cast effect" discussed in paragraph FSe3 of this chapter.

lWill be the same only in case the state of the

VP changed from "running" to "ready" and if this is
the highest priority ready VP.
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Finally, the ITCSADVANCE calls VPSCHEDULER to schedule
the next VP. Upon return from VPSCHEDULER, it will unlock

the VPM.

J. KERNEL PROCESSES

The kernel processes make up the non-distributed kernel. !
Non-distributed here has the meaning that these processes are
not distributed as part of each process's address space. |
Instead they represent system services and are used in the
management of physical resources and execute asychronously
with respect to user processes.

In this implementation all system processes are permanent-
ly bound to dedicated virtual processors, because it is very
expensive to use a dedicated real processor.

Currently, two kernel processes are used, the Memory
Management Process and the Idle Process (MMGT and IDLE Process
respectively). The MMGT process controls both primary and
secondary memory and the IDLE process defines the "no work"
state of the system.

The currently implemented MMGT and IDLE processes do not
have their final form. Instead they are "stubs" for these
processes. The current implementation does provide the
interface of these processes with the operating system and the
inter=-virtual processor synchronization mechanism, which is
the most difficult task when implementing such processes.

(This inter-virtual processor synchronization mechnism will
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also be used in the future when Input/Output management will
be added to the system.)

1. The Memory Management Process (MMGT Process)

The currently implemented MMGT process is permanently
bound to the VP$START (see Figure 39) and the IDLE process
is permanently bound to the VP$END. In this way these two
virtual processors are in contention for physical processors
but not for application (user) process scheduling.

Anderson [19) in his thesis describes the system-
wide initialization. Below is described what is going on
in each physical processor.

Each physical processor starts executing in the code
of the ITCSINIT module (see paragraph I2 of this chapter).
This module ends with a call to VPSCHEDULER. The VPSCHEDULER
schedules the highest priority (i.e., VP$START) virtual
processor to run on each physical processor. In this way
each physical processor executes the MMGT process as its
first process.

The MMGT process calls the loader module which
repeatedly calls the CREATESPROCESS module. When the loader
is finished, the number of APT entries (processes) is equal
to the number of application processes to be loaded. The
module CREATESPROCESS (see paragraph K10 in this chapter)
initializes the address space (stacks) for each process and
finally calls the module AWAITSFORSSTART (see paragraph K8).

The result is that each newly created process becomes blocked
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waiting for the special eventcount "START", with initial
value zero, to reach the value 1.

When no other process remains to be loaded the MMGT
process invokes ADVANCESFORSSTART. The result is that the
value of this special eventcount START reaches the value 1 and
all the created processes on its blocked list (see Figure 44)
are now awakened.

Then the MMGT process calls the module ITCS$AWAIT
(see paragraph 119 of this chapter). The result is that the
VPSSTART enters the waiting state and finally the VPSCHEDULER
is invoked. The VPSCHEDULER will schedule the VP which is
loaded with the highest priority application process (one of
the two central VP of Figure 39) since the VPSEND is bound
to the IDLE process. If no application processes are loaded
on the specific physical processor, the VPSCHEDULER will
schedule the lowest priority VP$END to run the IDLE process,
since the highest priority MMGT process is currently blocked.

2. The Idle Process (IDLE Process)

The IDLE process defines the "no work" state of the
system. The operating system attempts to schedule useful
work on system processors whenever feasible. If there is no
work then the IDLE process assures that the physical processor
always has some valid process address space to execute in.
The idle wvirtual processors act as "default" processors that

will only be run when no other eligible VP is found.
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Currently the IDLE process constitutes Jjust an "idle
loop". When the IDLE process is running, the this loop is
first entered the current value of the PRDS software COUNTER
(see paragraph H8 of this chapter) is obtained. Afterwards
each time this idle loop is executed this COUNTER is updated
(see also paragraphs I4 and I5).

By being able to read the value of these COUNTERS
(one per physical processor) the performance of the operating
system, the hardware communication links between different
"clusters" and finally the effectiveness of the
application processes "partitioning" can be actually tested.

The reason is, this COUNTER value records how much
time each real processor executed in the IDLE process. These
values can be interpreted and used as relative time or as
actual time by multiplying the COUNTER's value by the time
needed this idle loop to be executed once.

When in the future the preventive fault diagnosis
and recovery routines are developed, part of these routines
will be incorporated into the IDLE process, so that when a
physical processor has no work it will execute this preventive

fault diagnosis routine instead of idling.

K. THE TRAFFIC CONTROLLER
The Traffic Controller resides at level 2, multiplexes
the user processes among virtual processor and manages the

execution of these processes (process management) by invoking
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the extended instructions of the virtual processors in level
1 (ITC-level). 1In addition to implementing the level 2
scheduling algorithm, the Traffic Controller creates the ex-
tended instruction set: TCSAWAIT and TC$SADVANCE.

TCSAWAIT and TCSADVANCE (Traffic Controller AWAIT and
ADVANCE) are used to implement an inter-process communica-
tion and synchronization mechanism invoked by the Supervisor,
by using the eventcounts and sequencers.

The Traffic Controller's principal global data base (APT)
has already been discussed in paragraph H2 of this chapter.
Each entry of the APT corresponds to an application process
and contains sufficient information to enable a virtual pro-
cessor to be bound to and execute it.

1. Process Scheduler (TC$SCHEDULER)

The TCS$SSCHEDULER works in essentially the same way
that the Inner Traffic Controller's Scheduler (VPSCHEDULER)
does. However, the TCSSCHEDULER schedules processes, while
the VPSCHEDULER schedules virtual processors. The
TC$SCHEDULER can be called by the TCSAWAIT, TC$ADVANCE, and
TCSPESHANDLER (Traffic Controller Preemption Handler).

It selects the highest priority ready process from
the specific microcomputer's Loaded List (see Figure 44) to
be bound to an available virtual processor. The TCS$SSCHEDULER
works only with the processes which are runnable on its own
physical processor using the fixed set of the four virtual

processors assigned to this physical processor.
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When the TC$SCHEDULER finds a runnable process, the
Inner Traffic Controller module ITCSLOADSVP is called to bind
the selected process to the running virtual processor. Alter-
natively, if-there is no runnable process, the virtual pro-
cessor will be idled (bound to the Idle Process and placed
in the idle state) by a call to the Inner Traffic Controller
module IDLESVP.

2. Traffic Controller Locate Eventcount (TCSLOCATESEVC)

This is a "utility" function called only by the
Traffic Controller modules TC$SAWAIT and TCSADVANCE. Together
with the following module TC$SLOCATESSEQ it is used to simplify
the handling of eventcounts and sequencers respectively.

Its input argument is a pointer to the name of the
eventcount. When invoked, TCSLOCATESEVC makes a linear
search in the Eventcount table (EVC$TABLE) to locate the
desired eventcount by matching the names. If a match is
found it returns the index of the specific eventcount in the
EVCSTABLE in the Accumulator (AX) register, otherwise (if
not found), it returns an error code.

3. Traffic Controller Locate Sequencer (TCSLOCATESSEQ)

This is the second "utility" function used in the
handling of sequencers and is called only by the TCS$TICKET
(Traffic Controller TICKET) module.

TCSLOCATESSEQ works in exactly the same way as the
LOCATESEVC does except that it searches for sequencers in ¥
the Sequencer Table (SEQSTABLE) instead of eventcounts in

the EVCSTABLE. 192 N
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4. Traffic Controller AWAIT (TCSAWAIT)

The TCSAWAIT is an inter-process synchronization
primitive visible to the user, via the "GATE. It allows a
process to suspend its own execution pending the occurrence
of a specified event. TCS$SAWAIT is called with two input
arguments, (a pointer to) the name of the eventcount and the
value (of the event) to be awaited.

Upon invokation, Await locks the Active Process Table
and then calls the Inner Traffic Controller utility function
ITCSRETSVPTC to obtain the identity of the running virtual
processor. This is used in a search of the Active Process
Table to identify the process which invoked the TCSAWAIT.

Once the calling process has been identified, an
implicit call is made to the TCSLOCATESEVC to locate the
index in the EVCSTABLE of the input argument (eventcount
name). Then the current value of the eventcount kept in the
EVCSTABLE is compared to the awaited value specified in the
call. If the event has not yet occurred (viz., the current
value in the EVCSTABLE is less than the awaited input
argument value), then the process will enter the blocked
state. The Value of Eventcount Awaited field in the Active
Process Table is updated with the awaited argument value and
the process is placed on the eventcount's Blocked List (see
Figure 44). Otherwise, if the event has already occurred
(viz., the current value is greater than or equal to the
awaited input argument value), then the process is not

blocked but is made ready. 193
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Finally, in both cases, TC$AWAIT calls the TCS$SSCHEDULER
to schedule the highest priority ready process. Upon the
return from TC$SCHEDULER it unlocks the Active Process

Table.

5. Traffic Controller ADVANCE (TCSADVANCE)

The TCSADVANCE is an inter-process synchronization
primitive visible to the user, via the "GATE". It allows a
process to signal the occurrence of an event. It updates
the eventcount and signals those processes which had blocked
themselves for this event. Thus TC$ADVANCE is also responsi-
ble for invoking the preemption mechanism.

TC$ADVANCE is called with one input argument, (a
pointer to) the name of the eventcount being advanced.

It first locks the Active Process Table, then makes
an implicit call to the TCSLOCATESEVC to locate the index in
the EVCS$STABLE of the input argument (eventcount name). Then
the current value of the eventcount in the EVCSTABLE is
incremented by one. The eventcount's Blocked List (see
Figure 44) is searched for processes which had previously
blocked themselves waiting for the same eventcount to reach
this value. As processes are found that should be awakened,
vii., if the current value 0of the eventcount in the EVCSTABLE
is greater or equal to the EVCSVALUE$AW (awaited eventcount
value) field of the APT corresponding to the specific process,

then these processes are made ready.
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An entry in a temporary array of physical processors
is now made to record the physical processor in whose local
memory the newly awakened process is loaded for preemption.
The awakened process is then removed from the eventcount's
Blocked List.

Once all of the processes to be awakened have been
found, TCSADVANCE determines which virtual processors must
be preempted. This is done for each of the previously
flagged physical processors by first assuming that all of
the physical processor's TC-visible virtual processors (two
in this implementation) should be preempted. Then the
decision is made as to which ones will not be preempted.
This method greatly simplifies the algorithm. First a
temporary list (array) of virtual processors is initialized
to indicate a virtual preempt for each of the virtual
processors. The Loaded List is then searched to find those
processes which should be running. The processes which
should be running are those with the highest priorities that
are either in the "ready" or the "running" states. Assuming
that there are 2 virtual processors per physical processor
used for multiplexing, then the 2 highest priority "ready"
or "running" processes in the Loaded List should be running.
Any lower priority processes that actually are running
should be preempted. TCSADVANCE determines which of the
processes that should be running already are running and

deletes their virtual processors from the preemption list
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(resets the preempt flag in this array). What will remain
at the end are those virtual processors that are to be
preempted.

The next step is to actually issue the preempt
interrupts. The temporary preempt list is checked and if a
preempt is indicated for a virtual processor, the Inner
Traffic Controller module ITCS$SENDSPREEMPT is called to
actually issue the preempt.

TCSADVANCE next readies the process which invoked it
and calls the TC$SCHEDULER. Upon the return from the TCS$-
SCHEDULER the Active Process Table is unlocked.

6. Traffic Controller Ticket (TCSTICKET)

The routine TCSTICKET is also used in the inter-
process synchronization and communication mechanism. It is
the only operation performed on sequencers. It expects one
input argument, (a pointer to) the sequencer name and it is
visible to the user via the "GATE".

When invoked, TCSTICKET locks the Active Process
Table, and calls implicitly the TCSLOCATESSEQ to find the
index in the global sequencer table (SEQSTABLE) of the
sequencer name given to it as the input argument. It then
obtains from the SEQSTABLE the current sequencer value
(SEQSVALUE) corresponding to the specific index and returns
this sequencer's value to the process which called the
TCSTICKER. The value according to the PL/M 86 language

conventions is returned to the accumulator (AX) register.
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Before returning, TCSTICKET increments by one the
value of the sequencer and finally unlocks the Active Process
Table.

In this way, TCSTICKET returns an unique sequencer
value with every invokation, which will always be one more
than the last value returned in the same way that TCSADVANCE
increments the eventcount value (EVCSVALUE). This is the
reason why eventcounts and sequencers were defined as "positive
non-decreasing integers".

7. Traffic Controller Preemption Handler (TCSPESHANDLER)

The TC$PESHANDLER is not a separate procedure but is
just a label in the main program of the TC.

It serves as the virtual preempt interrupt entry
point into TC$SCHEDULER and is invoked only by the Inner
Traffic Controller Scheduler (VPSCHEDULER) in the course of
virtualizing preempt interrupts. Actually the VPSCHEDULER
transfers the program control, via the virtual interrupt
vector, to the global label TC$PESHANDLER. Recall that the
virtual interrupt vector residing in the PRDS (VIRTSINTS-
VECTOR) is initialized to point to the TCS$SPE$SHANDLER label.

The TCSPESHANDLER first locks the Active Process
Table, then calls the TC$SSCHEDULER which will find the highest
priority ready process and bind it to the preempted virtual
processor. Upon return from the TC$SSCHEDULER the program
control is transferred back to the VRSCHEDULER, effecting a

"virtual interrupt return®.
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8. Await For Start (AWAITSFORSSTART)

This module is a part of TCSAWAIT and is called only
once, during system initialization, by the MMGT process. It
is invisible to the user.

It accepts three input arguments, the index of the
process in the Active Process Table assigned by the CREATES-
PROCESS (Create Process) module discussed in paragraph 9
below, the eventcount name and the eventcount value to be
awaited. There is in the system a special eventcount named
"START" with initial value zero. The second input argument
is the name of this special eventcount and the third, the
awaited value, which is always one.

Each time the CREATESPROCESS is called to create a
process, the last statement is a call to AWAITSFORSSTART
(Process, Start, 1l). 1In this way each newly created process
after creation is set to the blocked state awaiting for the
special event START to reach the value 1. Each new process
is added to the blocked list (see Figure 44) for the event-
count START.

9. Advance For Start (ADVANCESFOR$STARS)

This module is a part of TC$SADVANCE and is also
called only once during the system initialization by the MMGT
process. It is invisible to the user.

It accepts one input argument (a pointer to) the name
of the eventcount START. Where invoked it advances (incre-

ments by one) the value of the special event START. The
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result is that the value of START, initially zero, reaches
for every new process the awaited value of 1. Then using
the existing signalling mechanism, (the same as in the
TCSADVANCE module), ADVANCESFORSSTART awakes each process on
the START eventcount's blocked list and sets its state to
ready.

The created processes are now in contention for
processor resources. The same sequence of actions will be
followed as in the case of TCSADVANCE except that ADVANCES-
FOR$START doesn't ready the calling process (which is the
MMGT process) and also doesn't call the TC$SCHEDULER but
merely returns program control to the caller, the MMGT
process.

10. Create Process (CREATESPROCESS)

The CREATESPROCESS module provides the capability

to dynamically create processes. It is called with one input
argument, a pointer to a process parameter block (PPB) struc-
ture containing all the information necessary to initilize
the process's stacks and enter the newly created process into
the Active Process Table. All of the process' segments had
previously been loaded into memory by the system loader, as
described by Anderson ([19].

CREATESPROCESS first locks the Active Process Table.
The next step is to enter the process in the Active Process
Table. To create this entry the traffic controller uses the

parameters passed by the PPB structure (see MMGT Process in
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previous paragraph J1 of this chapter). The process is also
inserted into the Load list based on its priority, viz.,
CREATES$PROCESS searches down the LOADSLIST corresponding to
the physical processor on which this process is loaded and
sets the LOADSTHREAD field (see Figure 44) in such a way
that the currently created process is entered immediately
ahead of the first process found to have lower or equal
priority.

Then CREATESPROCESS initializes two stack frames for
this process: the KERNELSSTACK and USERSSTACK corresponding
to the kernel and user domain respectively. In this way the
process' address space is divided into these two separate
domains of execution. The kernel stack has already been
discussed in Paragraph E of this chapter (see also Figure 26).
The user stack is shown in Figure 48 and the relation between
these two stacks in Figure 49. Since in the PL/M-86 language
the stack grows downwards (see Figure 22) by keeping the
kernel stack above the user stack the KERNELSSTACK is protect-
ed from accidental user tampering (viz., overwriting KERNELS$-
STACK is avoided).

The location of these stacks and the imitial register
values (viz., initial values for all of the 8086's registers)
for the specific process are passed by the PPB structure and
used in the initialization of the stack frames.

Finally, CREATES$PROCESS unlocks the Active Process

Table and calls AWAITSFORSSTART (Await for Start) to block
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the newly created process and sets it in the blocked list of
the special eventcount START.

11. Traffic Controller Create Eventcount (TCSCREATESEVC)

This module is visible to the user via the "GATE".
When invoked by an application process it creates the event-
count specified by this process. TCSCREATESEVC is called with
two input arguments, (a pointer to) the name of the eventcount
to be created and the desired initial value, by the definition
of eventcount [10] this value should always be zero.

Upon invokation, TC$CREATESEVC locks the APT. It then
calls TCSLOCATESEVC to determine whether or not the eventcount
had already been created. This is to avoid making duplicate
entries (since each process which will use the eventcount must
declare at least the name). If the eventcount had not previous-
ly been created (viz., no entry is found in the Eventcouﬁf Table
with the same name as given in the input argument) then an entry
is made in the Eventcount Table. The name is copied into the
Eventcount Table EVCSNAME field and the eventcount's current
value (EVCSVALUE field) is initialized to the second input
argument. Otherwise no entry is made. When the entry is made
in the Eventcount Table the APTS$SPTR field is initialized to
FFH (the nil pointer), meaning that there is no process in the
blocked list corresponding to this eventcount (empty blocked
list).

The value of the variable EVENTS (see paragraph H3 of

this chapter) is incremented by one each time an eventcount
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is created. In this way the operating system keeps track of
how many eventcounts are currently used.

Finally, TCSCREATESEVC unlocks the APT and returns
the program control to the calling procedure.

12. Traffic Controller Create Sequencer (TCSCREATESSEQ)

This module is also visible to the user, via the

"GATE". When invoked by an application process it creates
a sequencer in exactly the same way that TC$SCREATESEVC
creates an eventcount. The only difference is that it accepts
one input argument, (a pointer to) the name of the sequencer
as defined by the user. The initial sequencer value is
always zero.

The operating system keeps track how many sequencers
are currently used in the system by using the variable
SEQUENCERS (see paragraph H9 of this chapter).

13. Traffic Controller Read (TCS$READ)

The TCS$SREAD module is also visible to the user, via
the "GATE". It returns the current value of an eventcount to
the calling process. It is called by one input argument, (a
pointer to) the name of the specific eventcount.

When invoked, TC$READ locks the APT and then calls
the TCSLOCATESEVC to obtain the index of this eventcount in
the eventcount table (EVCSTABLE). Using this index, TC$READ
obtins the current value of the eventcount from the EVCS$SVALUE
field of the EVCSTABLE and returns this value in the accumula-

tor (AX) register.
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Prior to returning to the calling procedure it unlocks
the APT.

14. An Overall View Figure

After finishing the detailed description of the ITC,
system processes and TC, an overall view of the two-level
scheduling and multiplexing technique is illustrated in
Figure 50. This view is similar for each of the physical
processors in the system.

At the ITC level (LEVEL 1) the left most and right
most virtual processor, e.g., VP$START and VPSEND are
permanently bound to the MMGT and IDLE process respectively.
They are in contention for physical resources (in the figure
for the physical processors), but they are not in contention
for user process scheduling. The remaining two central VP's
are temporarily bound to supervisor processes (user or
application processes) as determined each time by the
TC$SCHEDULER. The criteron is that the highest priority
process will be scheduled first. 1In the case when no super-
visor process is ready, the TC invokes ITC IDLESVP (see
paragraph I10) which loads an idle process on the VP. The
idle process will actually run only when the VP to which it
is permanently bound (VPS$END) is scheduled. This will happen
only when all other VP's are waiting the occurrence of events
or temporarily bound to idle processes (i.e., when there is

"no work" for the specific physical processor).
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The ITC VPSCHEDULER schedules VP's on the physical
processors. The crite;on is that each time it schedules on
the physical processor the highest priority "eligible" VP.
Eligible in this design means ready or in the idle state,
but with the preempt pending flag set.

In this way the operating system supports multipro-
gramming on each physical processor and also multiprocessing
(concurrent processing) since there are several processors.

The transitions of the processer among the
"ready~blocked~run" states is controlled by the inter-process
communication and synchronization mechanism and also the
TC$SCHEDULER.

The transitions of the VP's among the "idle-waiting-
ready and run" states are controlled by the inter-virtual
processor communication and synchronization mechanism and
the VPSCHEDULER.

Finally, the hardware interrupt structure is used for

preemptive scheduling to support real-time processing.

L. THE SUPERVISOR

l. General Description

In a general-purpose computer utility the "supervisor"
provides the interface between application programs and the
kernel of the operating system by supporting common services
such as development tools (e.g., editors, compilers, assemblers,

linkers, locaters, loaders), library functions, file system etc.
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In the current implementation only one module is
needed at the supervisor level, since all the above develop-
ment tools are supported by the INTEL's MDS system (Micro-
computer Development System). This module is written in
assembly language and is called "Gate" or "Gatekeeper”.

Tnere must exist a way to link each user (application)
program with the operating system in order to have as a result
the user (application) process shown in Figure 25. The Gate
is this "actual linkage" and is constructed such that it is
the only operating system module that the user has to link
to his program in order to access kernel functions visible
to him.

2. The Gate or Gatekeeper

The Gate exists on the boundary between the kernel
and supervisor levels of abstraction (see Figures 4, 5 and 9)
and therefore is called a "software ring crossing mechanism".
It is utilized to ensure that the kernel is "isolated"™ and
*tamperproof”. This module will be also important in the
future if the system's internal security is considered. This
structure is specifically designed to be compatible with the
future version of the 8086 processor.

The system services visible to the user are: TCSAWAIT,
TCSADVANCE, TCSTICKET, TCSCREATESEVC, TCSCREATESSEQ and TCS$SREAD.
All these modules are related to the synchronization and
communication mechanism. It is noted that the operating system

never calls (execute the code of) these procedures. They are
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called only by the user when the application programs need
synchronization support (viz., when an application program
is partitioned into asynchronous interactive parts).

The corresponding names for these procedures in the
GATE are AWAIT, ADVANCE, TICKET, CREATSEVC, CREATESSEQ, and
READ respectively.

The GATE contains the "public" declarations for these
procedures and in this way allows the user to call these
operating system procedures in exactly the same way that any
other "external" procedure would be called.

The advantage is that only the GATE (a very small
module) is required to be linked and loaded with each user
process and not the entire operating system. Furthermore,
during system generation [19], the GATE can be located in
exactly the same absolute address in memory for all of the
processes loaded on a single microcomputer. The result is
that the GATE segment loaded in with each process will be
overlayed and the same copy will be shared. This minimizes
the amount of physical memory used by the GATE.

The GATE is a set of global procedures which the
user programs can call directly. Each of the user accessible
(visible) kernel functions is represented by one of these
procedures. Actually they only set up the required para-
meters and use a "trap" feature (INT instruction) to effect
the call to the real procedure of the kernel. For example,

when a user program calls AWAIT then the GATE using the

VAR

same parameters calls TCSAWAIT, and son on.
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The GATE is written in assembly langauge because of
the stack manipulation that must be done for parameters
passing between PL/M 86 and ASM 86 (PL/M high level language
and assembly language) and to invoke the "trap handler" in
such a way to: 1) determine the correct kernel entry point
(the proper procedure) to call, and 2) properly pass para-
meters to the kernel procedures.

The GATE consists of three small modules called GATE,
trap handler and trap processes. When a GATE procedure is
called by a user program the parameters are moved on the
stack and the GATE reaches the trap handler by an interrupt
(e.g., an internal interrupt, or trap) using the INT
instruction. The trap handler transfer program control to
the corresponding trap process which in turn invokes the
real kernel procedure with the same parameters passed on the
stack by the user program.

This has the effect of de~-coupling the user from all
the operating system modules below the Supervisor level.

The software provided by the Gatekeeper has to perform
additional functions upon the kernel entry and kernel exit,
as shown in Figure 51.

Figure 52 tabulates the required format for all of the
external procedure declarations that must be included in the
user programs when invoking kernel functions. Of course, only
the kernel functions actually invoked need to be externally

declared by the user program.
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FIGURE 51.

Kernel Entry

Mask hardware preempt interrupts in the
kernel.

Save user domain registers in the user
stack (user domain).

Switch from user to kernel domain (stack).

—

Save user domain stack segment (SS) register

and user stack pointer (SP) register in the
kernel stack.

Check arguments and invoke appropriate
kernel entry point.

Kernel EXxit

Check for virtual preempt interrupts (call
CHECKSPREEMPT) when leaving the kernel
(unmask virtual interrupt).

Save kernel domain SS and SP registers in
the kernel stack.

Restore user domain SS and SP registers.
Restore user domain registers.
Unmask hardware interrupts.

Return to the user process, execution point
in the user domain.

KERNEL ENTRY - KERNEL EXIT

211

e ms—

[ WEH

Frocoon. MRS Rt G e b AAOWL Sty




. Creating an Eventcount:

CREATESEVC: PROCEDURE (EVENTCOUNT, VALUE) EXTERNAL;
DELARE EVENTCOUNT POINTER, VALUE WORD;

END;

Creating a Sequencer:

CREATESSEQ: PROCEDURE (SEQUENCER) EXTERNAL;
DECLARE SEQUENCER POINTER;

END;

The Advance Operation:

ADVANCE: PROCEDURE (EVENTCOUNT) EXTERNAL;
DECLARE EVENTCOUNT POINTER;

END;

The Await Operation:

AWAIT: PROCEDURE (EVENTCOUNT,VALUE) EXTERNAL;
DECLARE EVENTCOUNT POINTER,
VALUE WORD;
END;

The Ticket Operation:

TICKET: PROCEDURE(SEQUENCER) BYTE EXTERNAL;
DECLARE SEQUENCER POINTER;

END;
The Read Operation:

READ: PROCEDURE (EVENTCOUNT) BYTE EXTERNAL;
DECLARE EVENTCOUNT POINTER;

END;

FIGURE 52. KERNEL CALL EXTERNAL PROCEDURE DECLARATIONS
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In J. Wasson thesis [8], there is a whole appendix
(Appendix A) of 33 pages with programming instructions and
examples how to use the synchronization mechanism and the
operating system. It is considered redundant to repeat these
instructions. Instead, in Bppendix A of this thesis will be
incorporated several actual operating system test programs

and their output.
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V. CONCLUSIONS

A. RESULTS

The principal goal of this thesis, the development of the
kernel of a real-time, distributed operating system for a
microcomputer based multiprocessor system was met.

This operating system is hierarchically structured,
layered in three loop free levels of abstraction, viz., the
Inner Traffic Controller, the Traffic Controller and the
Supervisor, and fundamentally configuration independent.

This verifiable loop free structure was demonstrated with
EXAMPLE #6 in the Appendix A.

Furthermore, at each level of this hierarchical structure
the corresponding part of the operating system consists of a
set of understandable modules whose interactions are clearly
specified and strictly enforced.

The result is a relatively small and easy to analyze
operating system and this also was a principal goal.

Since the kernel is small: (1) less memory is spent for
its storage and (2) less processor time is spent in its
execution. This advantage of less memcry allows physical
distribution of the kernel's code and data among the micro-
computers and this distribution in turn helps to minimize

system bus contention.
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On the other hand the layered modular structure provides
the advantage of making it easy to debug, test and analyze,
ensuring correct operation and permitting an opportunity to

increase performance by tuning.

B. FOLLOW ON RESEARCH

Although the kernel executes correctly, as shown in the
examples of appendix A, before higher levels of abstraction
are added to the system, a more formal test and evaluation
plan should be developed. Once the kernel has been proven
highly reliable then the follow on research is feasible for
the reasons explained below.

The existing stub for memory management process solves
the two hardest problems of the memory management functions:
(1) the interface with the kernel and (2) the needed inter-
virtual processor communication and synchronization. Both
capabilities have been implemented and tested.

The hard problem for adding I/0 management is also the
inter-virtual synchronization mechanism which exists and
works correctly. For I/0 management one more VP will be
added on each physical processor permanently bound to the
I/0 process, in the same way as is done for MMGT and IDLE
process.

It is also possible to add file management (by dividing
its functions among kernel and Supervisor). Finally, the

process oriented structure of the operating system, the
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separation of the address space of each process intp user and
kernel domain of execution and also the existence of the Gate
lead automatically to the required structure for internal
security. Additional segmentation hardware is needed to
control the access (read, write) of the system's and user's
subjects (viz., processes), to the system objects (viz.,
segments). The needed hardware will be available in the

anticipated 8086 successor.
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APPENDIX A
SYSTEM'S TESTING

This appendix incorporated six examples to demonstrate
the use of the operating system and also to test the inter-
process communication and synchronization mechanism, the
inter-virtual processor communication and synchronization
mechanism and the inter-real processor communication
mechanism (used for preemptive scheduling and supported by
the hardware interrupt structure).

For each example, the input source code and the actual
output to the printer are incorporated.

Four of these test programs designed and implemented by
the author and the remaining two by students working in the
"Electro-Optics and Signal Processing Laboratory" of the

Naval Postgraduate School.
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EXAMPLE #1

In this example there are two interactive processes
running on a uniprocessor system under the operating system.
This example demonstrates the multiprogramming capability
and also the use of the inter-process communication and
synchronization mechanism.

In the input source code under the header EXAMPLE #1
INPUT, there are enough comments for easy understanding of
this example. Figures 53 and 54 are provided to illustrate
the interleaved execution of.these two processes and how
they interact using the synchronization mechanism. The
output on the printer is also provided under the header
EXAMPLE #1 OUTPUT.

The variables A, B and C have been incorporated and
are changed before and after entering the operating system
kernel (e.g., when the process calls ADVANCE or AWAIT)
to demonstrate that these values are correctly saved and

restored from the per process stack.
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EXAMPLE #1 INPUT

’ TILD 3R ZEL JaNTRT Se 1522 A
deL34IULIy 105
TECLARE b ,T,0.10 #7FEC,
TITELLY YT
SIILARE SSL(*) 37YTC INITrAL (CENPE®ING PRIC#1, IT HAZ 2I3HER 2°I7P
w§5C0@Y YT OINITIAL (POOCal, ENTERING ZELAY ),
S$33(#*) 3YIE INIUIAL (CEYICUTING In PROT#L 77,
#35&(®) 3YTE INITIAL (7SND CP DIWONSTRATICLH '),
vE38. %) BYTE INITI4L {CTPRENT VALJE JF 0 o= 7Y,
48 LITIRALLY CeCHY,
L7 LITIRALLY Taad’y
JEILARY DELTA(SY BYTE DAY A"“er\%‘\.
YMISA(SY STTE TATA(TAMESAL)S

243171 2FOCSOURS (ZVCSIDSPARV,IVCSVALEPARM) ZXITEINALG

CEZLARZ EVCSITSPARM PJINTER,
SVCSVALS?ARM 4IRDS

AZVANCT: PROCEZIIRE (IVCSIDSPAR™) EIXTZANALS
JECLAPE 2vCsIosPAPv POINTER;

2JT6THA: PROCITURE(CHAR)
:-CLAPn CEAR 3YTE
0 FHEILE (Iupur(auna) AND B1H) = 2;
END;
?CT?UT(BDBE) = C3ARS

JITSEEC: PROCELTRE(R);

CECLAPZ 3 BYTE;

TCL2AE ASCII(#) BYTE ZATA{ J1224%E793ATL
Ll JJTSCHAR(ASCII(SHR(Y,4) AND 3FH));
CALL CUTSCHAP(ASTII{Y AND oFT))5

Bt

.- XA
Lx )y

/EsERgnes  =zswazd M A LN PR DG RAM (amumun ISCXEEEX/

/* 2R0C#1 1§ TEE HIGEER PRIDRITY PROCESS */

CALL 3"'$C”AP(CP);
CALL JUTSCEARILE):
TALL Oafs UAR(LF) S

SC 1 =273 35
CALL 3015C“ﬁ°(“5a¢ )3
enls

CALL OUTsCRAR(CR)q
JALL 3"”$CH‘°(L?)3
3 = 55

A = 3%E+25;

S o= AF123

SALL QJUTSCHARICR):

TALL CUTSCBAPILES
TALL QUTSCEARILT)S

I3 L =2 72 223

SALL QUTSsCHAR(“SS2(1 )

AP

CALL JUDSCBARICR)S

SALL CUTSCHAR(LZ)S
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(% JEE IWwITIAL TALUE JF EveEwn
JALL ANAITIATELYALZS
. ?EC‘]SE THE TALOE I THE CALL STATEMENT IS 2,

ANALT JILL SUS?IND THE
LNG) PPITESS AND

,® VITTAL VALUE = 3,

E
4
JALL ZUTSCEAR(ZR)
JALL TUTSTIAR(LE
CaL1 SUTSCLADILE)
201 = 3 T 138

.AL. QUTSCEAR(MSI3(I) )¢

:xh- JITSCHAR(
SALL DUTSCHEAR(

CALL JIPSCEATICR
SALL JUTSCHAR(LY
CALL CUTSUSAR(LE

201 =2 70 2%

SALL JUTSCEAR(MSI2(I))3

NG
CALL QUTSCHAR(CR)}
CALL OUTSCHAR(LY);

€ I =2 73 2233
CALL TIVE(2E2):

Thr.
shes

A = oy
2 = sz
L= J¥ey

TALL AdAIT(AWVYEIZA 1)

CELTA AND WMEGA A2

PEE SCEELULZ? WILL SCHEZUL
"Y FOOv THE REMAINING PROCESIZS. PROC#1 #ILL
IET STITE =/

SREATER THAN T4Z #/
EXECUI'OV CF THAT */
LIGETR =/
T3 TH: */

/® SINCZI 1 1S SREATER TUAN PRESENT VALJE OF WMELA = 2, PROC#1 #/

¢ WILL 30 AGAIM TQ THE SLOCTED STATE AND SCHEDJILZR JILL

/¥ ZJLE PRICeC ®/

R
SALL JJTSCEARICR)
TALL OUTSCEAR(LE)

CALL 2UTSCPAR(CR)S
SALL JJTSCHAR(LF):
ZALL QUTSCEAR(LF);
06 1 = 2 73 223

CALL QJTSCHAR(MSIZ

2505
CHLL JUTSCEARICT);
CALL JJITSCEAR(LE)S

2C I = 2 TT 223;
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"o

L -r v/ran
el YIMEIZIOONG
1Ll
o= i3

L IlTs I

: o

JALL T I(ws33(1

:

Py = 2y
SALL IUTeE 1SILAY
IldplaY = i
JLLL OZITS ISPLAY S
JAZL IUT: PR
ALl ICs LI
SALL 2U7s LY

CALL AWAIT(IDEILTAL3)G

/® CNCE MOBE TEIS PRCCESS 50FS TQ THE 2LOCKEL STATE, SINCZ THZ PRESENT #/
Vv, ®

/% TALUT OF 2EL7a 15 2, (2 < 3

Ve

]
at

-

SALL JUTsCEsR!

:A-L S

-

I :

J!sCEAR{

SALL OUTSCAR(vS33(I))s
ENge
CALL JUTSCHARICR)S
CALL ZUTSCEA2(LR);

SALL JJDSCEARS
CALL 35T;C“a°'£

9
P

CALL JUTSCEAR/CR
Ly

F

2y I =2 73N
SALL JJTSCHAR(vS34(1))
P
TeIL dCTCVARICE
TALL JUTSCHERE(LT):

DR

/& 2F 291 $400JLE */

Vot ol g2
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3TzeMI2CLZ: 229

CTECLABE (4,%,2) IWTEGER,
I OWIRI

STSLAPI YSGL(®Y 3YTT INITIAL | “INTIVING 222Cx2.
¥SG2(*¥' SYTE INIDTAL | PRJICHZ. ENTEFING
“533(%% 3YTE INITIAL (“EXECUTING IN PROC
22 LITTRALLY ‘ang’,
LT LITIANLLY “orE7S

2TCLa23 DTLTACSY ZYIT CaTA(CTILIAGC),
FMEGA(SY TYTE DATA( 9MESAY™YS

$4422: PRICEIIRE (ZVOSITSPARY,ZVOSVALSPARM) ZXIE
CECLARE EVCSILSPARM POINTER,
IVCSVALSPAIV 4ORDS

LTTANGE: PRQCEZURE (EYCSIOSPARY) EXTERNALY
CICLARZ EVCOSIDSPARM POINTERS

2J7¢CEAR: PROCELUPE(CHAR)S
LICLARE CHAR 3IT
Lo JHILT (IvPYUT(
ENDS
J0TPYT(elsq) = CHARS

2008) AND 21H) = 2

{l/
I7 3As LOWwiR 2PICRITY 7,
IILAY
s N o
Re I

RNA

-
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AL A2t E L 2] z=z=== “ 0T PRIJGIAM (==

/® P8CCe2 I3 THZ ILCHEP POIQRITY PROCISS =/

(XS XRTE}
o
'O

SR RPLEXY)
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/% IVENT L
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LT4 4AS 4O# THE ¥4LJE 1, EJUT PRIC#L ¢
/® Inlll E

EVELT CELTA JILL REACE THE VALUE ¢

SALL J0TSCHAR(CR);
CALL JUDSCUAR(LE);
CALL OUTSCEAR(LZ)S
31 =32 2% 22

tCALL CCTsCHAR(vE32(1 )3
uli
CALL CUTSCEARICR)S

’

TALL SUTSCEARILY

01 =g T3 208
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AN
ALl 2UTSCHAR(LE) S

tale TIvETIZIZ0
Thiut

;% TRL OINITIAL YALTE SF IVINTS DILIA INT 4vEIZE ARZ

SALL ATVANSEI(ITEILIA)S

/* IVENT CELTA 3ZACEES VALJE 2,
/% AL30 JILL IET PROCH2 FOOM RUN
/® IZHIDULE® wilL SCHED(LE THE =
% (2N 319 JASE PROC21).

CALL 2UDSCHEAR(ID);
SALL LITSCEARILT)S
’

21 =3 713

CALL JUTSCHAR(MSI3(I1)):
ENDS
CALL SUTSCEARICR);
CALL JUTSCEAR(LE)S
SALL JUTSCHAR(CR)S
CALL CUTSCHAR(LF)S
CALL JCTSCEAR(LT)S
[0 1 = ¢ 1) 225

CaLl JUTSCEAR(MS32(I));
ENCS
CALL JUTSCHARICR):
SALL SUDPSCEAR(LE);

00 I = 3 7Y 2233
CALL TIME(2S¢);

ol EY]
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T ADVANIE JID

19 MWE 2IaIY

L Ast
-’\A E

{3AIP 23ICPITY 2TMa]

£z _?PCCal,
THIY THE

NIAG 230012

/®* TYE EVENT W#vEGA REACTES NOW PHE VALLE 1, SO ADVANCE #ILL
/% AGAEE PROC®1 AND SET PROC#2 [N REALY STATE.
/% TILER JILL SCHEIJLE PROC#1 (SINCE FOTY PROCESSES ARE NOW IN®/
/* THE RSADY ITATE AND PROC#1 FAS HIGHER PRICRITY.

CALL JJTSCHAR(CR)S

CALL OUTSCHAR(L?):

CALL JUTSCEAR(LT);

ol =¢ 313
CALL OUTSCRAR(MSI3(1))s

ENGE

SALL JJTSCHAR(CR)S

TALL JUTSCHARILZ)

-

SALL JDUTSCEARI(CR):
SALL JUTSCEAR(LF)S
CALL CITSCHAR(LF);
001 = 2 10 22;
2ALL JUTSCEAR(MSIZ(I) )
gND3
SHLL 2UTSCEAR/CYE)
SALL QUISCHARILY)

.
’
.
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00 1 = 3 10 224%
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EXAMPLE #1 OUTPUT

ENTERING PROC#1. IT HAS HIGHER PRIORITY
PROC#1. ENTERING DELAY

ENTER ING AWAIT

ENTERING PROC#2. IT HAS LOWER PRIORITY
ENTERING ADVANCE '

PROC#2. ENTERING DELAY
ENTERING ADV ANCE
EXECUTING IN PROC#1
PROC#1. ENTERING DELAY
ENTERING AWAIT
EXECUTING IN PROC#2
PROC#2. ENTERING DELAY
ENTERING ADV ANCE
EXECUTING IN PROC#1

PROC#1. ENTERING DELAY
CURRENT VALUE OF C = (03E8

ENTERING AWAIT

EXECUTING IN PROC#2

PROC#2. ENTERING DELAY
ENTERING ADVANCE
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EXECUTING IN PROC#1

END OF DEMONSTRATION
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PROC #2

5

A =B * 5 4+ 25

C=2AaA%*10

OUTPUT MSG 2 IN READY
STATE

DELAY
[fALL AWAIT (DELTA, 2)

OUTPUT MSG 1

&
{
A =10
B=A%*10 '
C=B+aA
SLEEPING \ !
(BLOCK STATE) CALL ADVANCE (DELTA)J
Lo~
gt
pELtd = 1 OUTPUT MSG 2 1
DELAY |
C=C-10 '
d DELTA = 2{f_ §CALL ADVANCE (DELTA)$
_ {
OUTPUT MSG 3
UTPUT MSG 2
ELAY '
=C IN READY ’
\ STATE |
C =A* 2 I
A=C*5 |
L AWAIT (WMEGA, 1) |

FIGURE 53.

|
J, ;
|
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|  ourpuT
|

|ENTERING PROC #1. IT
IHAS HIGHER PRI

l
|

IPROC #1. ENTERING DELAY

(ENTERING AWAIT

IENTERING PROC #2. IT
HAS LOWER PRI

ENTERING ADVANCE
PROC #2. ENTERING
DELAY

ENTERING ADVANCE

? [EXECUTING IN PROC #1

PROC #1. ENTERING
DELAY.

ENTERING AWAIT

INTERLEAVED EXECUTION OF TWO PROCESSES
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BLOCK STATE

ALL AWAIT (DELTA,

3)

@

OUTPUT MSG 3

ﬂ, DELAY
C=C+ 50
B=2C*2

B * 5

READY STATE

v

BLOCK STATE

DELTA

.-_

Y

3

OUTPUT MSG 3

OUTPUT MSG 2
DELAY
M B=A%*2

END OF PROC #2

[CUTBUT M3G 3
OUTPUT MSG 4
END OF PROC #1

FIGURE 54.
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A
"~ SCALL ADVANCE (WMEGA)S
ﬂb

y
"~ X ALY ADUANCE (DELTAR

EXECUTING IN PROC
PROC #2. ENTERING
DELAY

ENTERING ADVANCE

EXECUTING IN PROC
PROC #1. ENTERING
DELAY.

CURRENT VALUE OF
C = 03ES8

ENTERING AWAIT

EXECUTING IN PROC
PROC #2. ENTERING
DELAY.

ENTERING ADVANCE

EXECUTING IN PROC

$#2

#1

#2

#1

END OF DEMONSTRATION

INTERLEAVED EXECUTION OF TWO PROCESSES




EXAMPLE #2

In this example there are two interactive processes
running on a uniprocessor under the operating system. These
two processes simulate the image processing processes CLUTTER
SUPPRESION AND FILTER DESIGN. The data comes into the micro-
computer as frames of images and an extensive use of the
synchronization mechanism is required.

Following the comments in the input source code under
the header EXAMPLE #2 INPUT and the cutput messages under
the header EXAMPLE #2 OUTPUT, it is possible to follow the

interleaving execution and interaction of these two processes.
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EXAMPLE #2 INPUT

FiLz 52893321.33° 1g vy ®/

LARE [ 3YTE;

LAPT ¢? LITIRALLY ‘2%,
LF LITERALLY ‘2Az":

LARE 7 EYTE

43I 50°9¢
LARE FLTZS(

EYTE INITIAL (’PROC#1. INITIAL ENTSY INTC CLUTTIR SUPPRESSION 7'
SYTE INITIAL (°PROC¥1. #AIT FOR TATA REALY “)
AYTE INITIAL (°2PCCw1. PEPPORMING CLUTTER SUPPRESSICN ON FRAME: °),

- .

BYTE INITIAL (“FROC#1, ADVANCE FILTER SESIGN TYENTCOUNT )i

A9827: 29)CEDURS(SVCSIDSPARM,ZVCSVALSPARM) SXTERNAL;

CECLARE ZVCSIDSPARM

POINTER,

ZVCSTALSPARM JORDS

ENDS

AZVANCE: PROCETLURE(EVCSICSPARM) EXTERNAL;
JECLARE EVCSIDS$SPARM PJINTER;
IND;

JUTSCHAR: PROCETJRE(CHAR)S

DEJLARE CHAR 3TTE;

20 WEILE (INPOT(2DAH) AND 21H) = 2; END;
JUTPUT{ZL3E) = CRARS
IND;

JUTsHEIY: PROCECURE(Z)

IND

I =

C3

ZECLARZ 3 3ITE;

DECLARE ASCII(*) BYTE DATA (°2123435739ABCLDEF”);
ZALL JUTSCIAR(ASCII(SER(B,4) ANT @QFH));
SALL JUTSCHAR(ASCII(B AND 2FRH));

;

3:

SALL JJTSCHAR(LF)S
CO 2 = 2 TC 48j

CALL JJTSCHAR(MS31(Z));

ENL3

CALL UTSCHAR(CR)S
CALL SUTSCHAR(LZ)S
SALL JUTSCHEAR(LF);

JHILE (I <= 54);

CALL JUTSCHAR(LT)S
[3 Z = ¢ TO 453

CALL OUTSCHAR(MS32(2) )5

END?

SALL JJTSCHARI(CR)S
CALL JUTSCHAP(LE)S
CALL JTJTSCRAR(LFY;
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TALL MNALIT(3CSIPE,ING
=1 13

CALL JUTSCEAR(LTYS
07 = ¢ 70 485

TALL CUTSCIAR{MSIZ(I)

SALL CJTSEET(IN:
TALL CUTSCRAPR(CR);
TALL JUTSCHAR(LDT)S
SALL 0JTsCHAR(LT)
201 =23
CALL T
INTS

CALL MUTSCUAR(LP)S
207 = 2 7D 4E;

CALL JUTSCHAR(MS34(2))s

INDS

CALL JJTSCHAR(CR);
SALL JITSCHAR(LF);
CALL CUTSCHAR(LP);

CALL ACVANCE(QFLDES);

ENC7 /* 4HILE ¥/
/% MODULE %/
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;2 fILE 2q9832.3¢9¢C 18 vy ®/

ILIESSYILILE: D5
SIztans I osrTE;
TLILARL 3% rITERALLY ‘2rH,
LP LITEPALLY “2ad’:

) ITTE LATA({’CSUPPR"):
) 3YTE DATA('FLDESY”);

CIZLAR:
4331(*) 3YTT INITIAL (“PROC#2. INITIAL ENTRY INTO FILTER TESIGN ),
“352(% BYTE INITIAL (“PRCOCe2. AWAIT FOR DATA READY ),
+S32(%) IYTET INITIAL (°PROC#2. PERFORMING FILIER LESIGN IN FRAME: 7).,
“S34(*) 3YTE INITIAL (“PROC#2. ADVANCE CLUTTER SUPPRESSICHN EVENTCOUNT

AWAIT: PRICELURE(EVCSIDSPARM,ZVCSVALSPARM) EXTERNAL;
DECLARE IVCS$IDS$PARM POINTER,
ETYCSVALSPARM WORDS
INCS

ADVANCI: PROCEDORE(EVCSIDSPARM) EXTERNALY
CZCLAPE ZEVCSIJSPARM POINTER;
INDS

OUTSCEAR: PROCEDURE(CHAR);
CFCLARF CEAR EYTES
0 WJHILE (INPJIT(ZLRY¥) AND 21H) = 2; ENL;
2UTPUT{3038) = CHARS

ENDS

J7P$HEX: PROCELJRE(R)S
SEICLARS B 3rTE,
ASCII(=®) BYTE DATA (“212345£7S5ARBCDEF”);
2ALL JUTSCHAR(ASCII(SBR(B,4) ANL 2F4));
CALL JUTSCHAR(ASCII(3 AND 2PH));
NG

PO I X1

20 2 = 3 TC 405
CALL DJUTSCHAR(MSG1(Z))3
ENDS
2all J20TsCHAR(CR)/
CALL JUTSCHAR(LZD)S
SALL JUTSCHAR(LE)S

3¢ ¢HILE (I <= S¢);

CALL JUTSCEAR(LT):
10z = ¢ 0 29;

CALL CuT$CHAR(M332(Z))7
IND3
SALL JJTscuAR(C
SALL 2UTSCHAR(L
SALL JUTSCHAR(LZ

3" 0
nUT

SALL AWAIT(PLIES.I)S
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IND

20T =2 10 Zedd
CALL TIMR(23¢)3
INTS

CALL CJ7%CT
ENCY
SALL CUTSHEEX(D)S
CATL CUT3CEAR(CE)S
TALL 3UTSCHAP(LT)
ZALL JUTSCEAR(LE)

2 (3336203

Z4LL JUTSCHEAR(LE)S
W2 =2 70 465
CALL JUTSCHAR(MS34(Z))5
IND;
SALL JUTsCHAR(CR)S
SALL JJTSCHAR(LE)S
SALL JUTSCRAR(LE);
CALL MCYTANCE(GCSTPP);
ENL; /% JHILE */

/®*40DCLE */
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EXAMPLE #< OUTPUT

PROC#1. INITIAL ENTRY INTO CLUTTER SUPPRESSION

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 01

PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. INITIAL ENTRY INTO FILTER DESIGN
PROC#2. AWAIT FOR DATA READY

ENTER ING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 01
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT
ENTERING ADVANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 02
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT
ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT
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PROC#2. PERFORMING FILTER DESIGN ON FRAME: 02

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 03

PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT .

ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTER ING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 03

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPFRESSION ON FRAME: 04

PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 04

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT
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ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 05

PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 05

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 06

PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 06

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 07
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PROC#1. ADVANCE FILTER BESIGN EVENTCOUNT
ENTERING ADV ANCE

PROC#1. WAIT FJR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTER ING AWAILIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 07
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT
ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 08
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT
ENTERING ADV ANCE

PROC#1. WAIT FOR DATA READY

ENTERING AWAILIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAILIT

PROC#2. PERFORMING FILTFR DESIGN ON FRAME: 08
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT
ENTERING ADV ANCE

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 09
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADV ANCE
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EXAMPLE #3

The input source code for this example is exactly the
same as for the previous example. The difference is the output.
The output under the header EXAMPLE #3 OUTPUT has more output
messages. In fact in every module of the operating system
has been incorporated at least one output message as shown
in Figure 55.

In this way the debugging and checking becomes easier.

Also it is possible to follow the flow of program control
between several modules of the operating system.

The higher priority process is PROCH1l (CLUTTER SUPPRESSION)
with priority 40 and the lower priority is PROC@2 (FILTER
DESIGN) with priority 41.

The address space descriptor for the first process (the
base of its "per process stack") is equal to 6000H(this
appears as 600 because of INTEL's monitor convention), for the

second it is 7000H and for the idle process it is 5000.
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LEVEL MODULE OUTPUT MESSAGE
CHECKVIRTINT ENTERING CHECKVIRTINT
ITCSRETSVP ENTERING ITCSRETS$INT
RUNNINGSVPSID =
ITCSLOADSVP ENTERING ITCSLOADSVP
LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP IS:
ITC CHECKSPREEMPT ENTERING CHECKPREEMPT
GETWORK ENTERING GETWORK
SELECTEDS$DEBR =
RUNSTHISSVP ENTERING RUNTHISVP
SET VP TO RUNNING: VP =
ITC$SENDSPREEMPT ENTERING ITCS$SEND$PREEMPT
LOCKVPM ENTERING LOCKVPM
UNLOCKVPM ENTERING UNLOCKVPM
RDYTHISVP ENTERING RDYTHISVP
SET UP TO READY: VP =
T A b e - e e e e e e e ... - - -
TC$SCHEDULER ENTERING TC$SCHEDULER
TCSLOCATESEVC ENTERING TCSLOCATESEVC
TC TCSAWAIT ENTERING AWAIT
TCSADVANCE ENTERING ADVANCE
TCSPESHANDLER ENTERING TCSPE$HANDLER
FIGURE 55. OUTPUT MESSAGES OF THE OPERATING SYSTEM'S MODULES
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EXAMPLE

ENTERING CHECKVIRTINT
ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETS$VP
RUNNINGSVPSID
SET VP TO READY: VP
ENTERING GETWORK
SELECTEDSDBR
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

#3 OUTPUT

00
00

0500
01

ENTERING
ENTER ING
ENTER ING

ENTER ING
ENTERING
ENTERING

ENTERING
ENTER ING

UNLOCKVPM
CHECKPREEMPT
ITCSRETSVP
RUNNINGSVPSID
TCSPESHANDLER
TC$ SCHEDULER
ITCSRETSVP
RUNNINGSVPSID
ITCSLOADSVP
ITCSRETSVP

01

RUNNINGSVPSID =
LOADING VP NUMBER:
PRIORITY FOR THIS VP [S:
NEW DBR FOR THIS VP IS:
ENTERING GETWORK
SELECTEDSDBR =
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID =

01
01
40
0600
0600

01

01

PROC#1. INITIAL ENTRY INTO CLUTTER SUPPRESSION

PROC#1. WAIT FOR DATA READY

ENTERING
ENTERING

AWAIT

ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING TCSLOCATESEVC
ENTERING TCS$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPS$ID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
LOADING VP NUMBER: 01
PRIORITY FOR THIS VP IS: 40
NEW DBR FOR THIS VP IS: 0600
ENTERING GETWORK
SELECTEDSDBR = 0600
ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#1. PERFORMING CL! TTER SUPPRESSION ON FRAME: 01

240

\s

e

PRI

[Py N

e

e vombon W5 L Do prte




PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT
ENTERING ADV ANCE

ENTERING TCSLOCATESEVC
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING TCS$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING [TCSRETSVP
RUNNINGSVPSID = 01
LOADING VP NUMBER: 01
PRIORITY FOR THIS VP IS: 40
NEW DBR FOR THIS VP IS: 0600
ENTERING GETWORK
SELECTEDSDBR = 0600
ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING TCSLOCATESEVC
ENTERING TC$SCHEDULER
ENTERING [TCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
LOADING VP NUMBER: 01
PRIORITY FOR THIS VP IS: 41
NEW DBR FOR THIS VP IS: 0700
ENTERING GETWORK
SELECTEDSDER = 0700
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =« 01
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
PROC#2. INITIAL ENTRY INTO FILTER DESIGN

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING TCSLOCATESEVC
ENTERING TC3$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
LOADING VP NUMBER: 01
PRIORITY FOR THIS VP 1S: 41
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NEW DBR FOR THIS VP IS: 0700

ENTERING GETWORK
SELECTEDSDBR =

ENTERING RUNTHISVP

SET VP TO RUNNING: VP =

0700

01

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 01

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADV ANCE

ENTERING TCSLOCATESEVC
ENTERING ITC$SENDSPREEMPT
ENTERING ITCSSENDSPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING TC$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID =/
LOADING VP NUMBER:
PRIORITY FOR THIS VP 1S:
NEW DBR FOR THIS VP IS:
ENTERING GETWORK
SELECTEDSDBR =
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

01

01

01
01
40
0600

0600

Q1

PROC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 02

PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADV ANCE

ENTERING TCSLOCATESEVC
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING TCS$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID =
LOADING VP NUMBER:
PRICRITY FOR THIS VP 1S:
NEW DBR FOR THIS VP 1IS:
ENTERING GETWORK
SELECTEDSDBR =
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

v

01
01

g1
01
40
0600

0600

01 -

PROC#1. WAIT FOR DATA READY

ENTERING AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING TCSLOCATESEVC

01

.
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ENTERING ITCSSCHEDULER

ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID =
LOADING VP NUMBER:
PRIORITY FOR THIS VP [S:
NEW DBR FOR THIS VP IS:
ENTERING GETWORK
SELECTEDSDER =
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

01

01
01
41
0700

0700

01

PROC#2. AWAIT FOR DATA READY

ENTERING . AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING TCSLOCATESEVC
ENTERING TCS$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID =
LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP IS:
ENTERING GETWORK
SELECTEDSDER =
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

01

01
01
41
0700

0700
01

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 02

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADV ANCE

ENTERING TCSLOCATESEVC
ENTERING ITC$SENDSPREEMPT
ENTERING ITC$SENDSPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING TCS$SCHEDULER
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP
RUNNINGSVPSID =
LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP [S:
ENTERING GETWORK
SELECTEDSDER =
ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

PROC#1. PERFORMING CLUTTER

01
01

01
01
40
0600
0600
01

SUPPRESSION ON FRAME: 03
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EXAMPLE #4

This example was designed and implemented by Kurt
Holmquist for testing purposes of the operating system,
and consist of five processes running on a uniprocessor
system under the operating system.

In the following pages are included the input source
code under the header EXAMPLE #4 INPUT and the output of
the microcomputer directly to the printer under the header

EXAMPLE #4 OUTPUT.
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EXAMPLE #4 INPUT

s® 0 Tals aoiuls ccatafins 3 grofran fran 4alca
Tuluinls ==oaegeae ~3m 32 psanaraped vy
“m3 J/35 syazarcatzatioa aa? ssnedulinz
Iamsticas, 712 1uncer of 3rocesses
to 72 Trae3t22 ls tas valu2  aum _nres .
Tn2 aroc2ssas saould all ha ia tha reyiy
state iafctally. #y
SULII PRI L9

(RERRER Tgeterial proceiur? 122laratigas  FERNsay

Tit-ut_awryy PROJECISE fvaluz) EYITRNALS
JiZLARI walue 40RES

Wa

P P

3234 cnmar: PRICEIVRE EYTE  EXTERNALS

Tuls

“3¢5322: OPOCEDYTE (mese_331) IXTERNAL;
JICLARE n2sz_ail  POINTERS

St

AwWait: 2P2CEDOPE (avant name,count) EXTERNAL;
SECLARE 2vent_aame POINTER,

ssuat 40RL;
8D}
tiya PROCEZUFE (2vent _nana) EYTERNALS

nea
[iJLARE eveat_zane POINTER;

/e=xxa®  Eyent souant i2slarition w¥kaxm/
TECLAAE atvacce_aext (5} BYTZ DATA (TADNXTAC);

/RERIRR Mage3gs 3nd varianla 12clarations wwEERm,

-_sruz (¥) PITE INITIAL (2DH,24H,3AH, “RONNING PROCESS #°),
siun  (®' 3ITE INITIAL ("2 DER = ,d),
=_aiya (#) EYPE INITIAL (@DE,2AH,° . .

HIT A EKEY T2 CALL "ADVANCE™.’,¢).
~_awai (%} 3TTE INITIAL (20H,24H,° .

§IT A EEY 70 CALL "ANAIT

TLtLe),

{agaitel -~ovat, ss_reg, orocess) WORD,
1 #2ED INITIAL (@), char BYTE:

,

TECLARZ  aun_pras LITERALLY ‘873

CECLA®E  INTRY LAEBEL P®7RLICS

/® Froeran far azy junber of processes %o exeézute =/

3g itgelf by readlng tae
valu2 nf the grent regigter (D3R). "/
ss_rez = ITACCTASE]
rr2228s = 3T3(ss_ree, %, AND 3FY;
snun @Y = LOd (prosess) ~ 222%;

"n : 245
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/%

/®

.

11
[&]

dmiap zut ta2 nuTvier ¢f %23 zrecess curraat.y
sunaine 31i tqe I3R, *y
CALL vacsage {2r crunl;

JALL Jutout_a2x [ss _rc2z);

5231 2qar? /® Js=® x27y%0ari ingu
tarousa th2 »rogr

223ug2 %22 i1asl proz2ss o4 t1e (o0ad ilst 1as lower

srispity ta2an all teh2 atazrs, it 23s 3 sligatly 1iffer2gt
ryora™ s23juenc2,  For tn12 last 2roc2ss oaly, tne praicass

22 will tak2 plaze waea ta12 caly to 4ddvaace is nadie. */

I orocess = aun_proz THEN I0;

L]

CALL Advazce (Jaivaace_aext);

it

NDS

All processes sxcept tae last 53e@ o2 ta® load list
ayasyte tie followine. ®/

IL3E [O3
idvagce tae avent count */

CALL Alvance (33ivance_aext);

CALL “vessage (3r_awai)s

char = Read _char;

await2d_couat = ((1-1)/5 + 1)*5;

CALL tvai+ (3aivance _aaxt,awaited couat);
Jha2 currently runaine process will bheccme dlockeil
at tals ootat and anotner prozes 4ill beein ruaaiag.
£121 2 pracess wialca 1as previously blocked itself
Yepins rucnineg again, the a2ntry point will be here
124 tie fsollowinz call #will ieternine the proc2ss

switzg tire, */

ENDS

[

NI
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RUNNING

RUNNING

RUNNING

"RUNNING

RUNNING

RUNNING

RUNNING

RUNNING

RUNNING

RUNNING

RUNN ING

RUNNING

RUNNING

RUNNING

RUNNING

EXAMPLE
PROCESS +#1 DBR
PROCESS #2 DBR
PROCESS #3 DBR
PROCESS #4 DBR
PROCESS #5 DBR
PROCESS #1 DBR
PROCESS #2 DER
PROCESS #3 DBR
PROCESS #4 DER
PROCESS #5 DBR
PROCESS #1 DBR
PROCESS #2 DBR
PROCESS #3 DBR
PROCESS #4 DBR
PROCESS #5 D3R

#4 OUTPUT
= 0710

HIT

HIT
= 0720

HIT

HIT
= 0730

HIT

HIT
= 0740

HIT

HIT
= 0750

HIT
= 0710

HIT

HIT
= 0720

HIT

HIT
= 0730

HIT

HIT
= 0740

HIT

HIT
= 0750

HIT
= 0710

HIT

HIT
= 0720

HIT

HIT
= 0730

HIT

HIT
= 0740

HIT

HIT
= 0750

HIT
247

> >

> >

KEY
KEY

KEY TO
KEY TO

KEY

KEY
KEY

KEY
KEY

KEY

d3 33 43

33
EOEE PR OBE P

b ———— e 1 o  on

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL

¢ BEOBE RE BF

CALL

"ADVANCE" .
"AWAIT",

"ADVANCE" .
"AWAIT®,

"ADVANCE" .
"AWAIT".

"ADVANCE" .
"AWAIT".

"ADVANCE" .

"ADVANCE" .
"AWAIT".

"ADVANCE" .
"AWAIT".

"ADVANCE" .
"AWAIT" .

"ADVANCE" .
"AWAIT".

*ADVANCE" .

"ADVANCE"
“AWAIT" .

*ADVANCE" .
"AWAIT®.

"ADVANCE" .
"AWAIT" .

"ADVANCE" .
TAWAIT" .

"ADVANCE"® .




EXAMPLE #5

This example was designed and implemented by the following
students of Naval Postgraduate School:

LT Kenneth Webb

LCDR Lev Schnieder

LT Antony Christian
in partial fullfillment (as a project) of the requirements of
the course CS 3550. It can be used to test the synchronization
and communication mechanisms of the operating system.

In Figure 56 is shown the interactions of five processes:
I/0 CONTROLLER, ID-POSIT, CORRELATION, TRACK and DISPLAY. Also
shown are five shared buffers: SENSBF, SENSDR, ACTIVE-BUFFER,
OUTPUT TABLE and TRACK TABLE residing in the system's global
memory while the processes code and data are located into the
microcomputer's local (on board) memory. For example, the
shared buffer SENSBF is used by the I/0 CONTROLLER and ID-POSIT
processes and so on.

Flow of information into and out of the various processes
and buffers is indicated in Figure 56 by the direction of the
arrows. Eventcounts are shown between the processes.

The details about this project will not be incorporated
here since these can be extracted from the following input
source code, under the header EXAMPLE #5 INPUT. The output
to the printer follows the input source code, under the

header EXAMPLE #5 OUTPUT.
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I/0

CONTROLLER

INTERRUPT

|

SENSBF

iD - posrTW‘

l

SENSDR

v 2

ACTIVE-~
BUFFER

ID POS IDBUF
| CORRELATION
TRACK r
TABLE
ACBUF TABAC
| i' TRACK '
UPDAT OTRDN

¢

OuTPUT
TABLE

DISPLAY ]¢

FIGURE 56. AN EXAMPLE OF FIVE INTERACTIVE PROCESSES
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EXAMPLE #5 INPUT

. A ::?35:?:?—9: . — —

(FMODULE BTIINNING®/

/™ DICLAPATIONS#/

2IJLAPT 4 WCORT !
SECLABE TIRENT (2
Ii%lAR: IIPOCT (€

£

25ClaR: IC0PeZ /

TITIAL(D)

) TYTE DATA (CIZBUTY");
) BTTE DATA (°ICPISY’)s
} BYTZ JATA (“IJPRER’;

TECLARE IGTSTATA(S) BYTE DATA(’TGTSDATAR");

JSTLAPE IDSPN3ITSSTART(15) RYTE DATA(IDSPOSITSSTARTY )

SECLARE [ INTEGER INITIAL (2);

CEZCLARE SEINSZJT (22) STRISIJRE (INPO(1S) RTTE, TYME #ORL,

FLAGS? DPITE) SXTERNAL;

CECLARE RESEZT LITERALLY “328°3
CECLARE IZ #0Ar iaftial (1)7
JECLAPE (J,L,{,3EAPING) INTEBGER;
CECLARE (XSSENS, TSSENS, RANGE) INTEGER:
TECLARE 20FFIR(13) INTEZER;
SIJLAPZ (3NGSMULTSPTR, 2031IT$PTP) POINTER;
JECLARE SENSSNUML INTEGER EYITERNALS
CECLARE (X$T57, YS$T3T) INTEZER EXTERNAL;

SCLARE TYVEL #CRD EXTERNAL}

CECLARE (BNGS¥ILT PBASED BNGSMULTSPTR)(2) INTEGER;

[ZCLARE (POSIT 3ASED POSITSPTR)(2) INTEGER;

AdAIT: DEDCEDOPE (EVCSIDSPARM, BVCSVALSPARM) EXTRRNAL;

CECLARE EVC$ICSPARM POINTERS
CESLAPE ETYCSVALSPAPM 4CRDS
Ehe AMAITS

¢Z7ANCE: PROCETUAE (ZVCSIT$PARM) EXTEZBNAL;
LECLARE EVCSIDSPARM POINTERS
END ATVANCES

DECLARE BEARING INTEGER;
IND SNGANALYZERS

EXTERNALS
END TSTSPOSIT?

2: procedure (pt>) exteraal;
areptr polnter;

(U TN ¥
[~ B Ne]
O e
-~ o 0o

¥2: PROCELJRE EXTERNAL;

-s b3
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e e

INFANALYZZR: PYOCEDIRE (BEAPING) PO0INTER EXTERNALj

23T4PCSIT: PRICEDURE (XSBASE, Y$BASE, XSCO4P, TSCOMP, ENG' POINTER
DECLAPE (X$BASE,Y$BASE, X$COMP, I$COMP, RANG) INTEGZR;

ey B A o



_

[S—

S owalles 2L
CALL AWBIT (21TPRAE,22):
1L 0= 22 « 1;
1T SENSEOT(I).TLAGS? = 918 TEEN

/®INCRIVINT THE 3(UPPSR COUNT aND JRTAIN THE DATA. CCNVERT
TRIM ASCII 73 GUMBRICHL REPRESENTATION.®/

< 22 THEN

J =@ T0 143
ITFFER(J) = IND(SENSBTF(I).INFO(J) - 3I0H):

=3 70 14
JFFER(J) = IN’( SINSIOF(1).INZO(J) ~ 32H)}

-e w&.

SENSBGP(1).PLAGS? = AESET;
I =1+ 15

END?
/* TEE NEXT STEP IS TO CONSOLIDATE THE INPUT INPORMATIO
INTO THE APPROPRIATE VARIABLES*/

203
YSSENS = ((12e@ *= BUT “!R

—

-

(]

*

(-]

q

~

=)

i

-
v-t-\'ﬂ
—\:n w o~

3EARING = ((122 = mrr:.

1)

PANGE = ((122 * BOPFER

TER(

)}
END;}

/% CALL THE SUBROUTINES #RICH ANALYZE THE DATA TO PROLUCE

T3E JARGET’S POSITION ON AN X~Y GRID®/

b H

sall erite (3(°Calliaog »earine_zaali

z
zall write (3(°Calliag target_posit.%
END?

er.3’));
v

/% LOAL T4E ™EvORY SHAREZD #ITH IYE CORRELATION PROCESS*/

CALL AJAIT(BTOBOF,d);
i =4+ 13
323
SENSSNTM1 = BCITER(Q)S

| { 251




Co— .
}
‘ |
“rvIl = SENSZJT(I-1).TYME;
XeT3T = 20S17(2};
ve?3T = POSIT(1);
INT;
/% JET THET ADVANCE IO SISNAL THE IND OF THIS PROCESSOR ;
20 THI SCHEIULER®/
CALL ADVANCE(QIDPOS);
! ND;
’ END IDSPOSITS
i T T B i a L
]
]
{
t
)
b
3
i
‘I 252 ;
’ i
1
H
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/®

/‘

/*

o

STRRILATION: D05/ TIIUNING JF vOLULZ *

TEIS w32rls ZJETEIVINES JHETHER ANY INCOMIwWs TAEGEDS CN
SORRELATIL #ITH ANY 294C0XS ALREATY EEINS TRACKEZD IN PHE
JRICASTSELF. IT THERE IS A CO®RELATION,THEN THE MOOMLE
JPIATES Tui TAPSETTS T POSITION, Y POSITION, AND TIME.
IF TEEPE I3 5O COREELADIONV,IHEIN T9Y “COULE 4331535 732
NEW TRPGET A NEJ TRACK VUMBER ANT ENTEES IT’5 TRACE
MJ¥SER, YU POSITION, Y S8J3SITION, ONT TIwE IN THEI JRACKS
IVRLE,  #/

1%

R

/% FXTESRNAL DECLARATIONS =/

CECLARF TRACZSTAFLE(25)STRUCTURE(TRACKSNR #ORD,X$POSIT INTEGER,

Y$23SIT INTEGER,7YME WORD,CSE INTESEP,5PD INTEGER,
X$ZJP0OS INTEGER,YSFTPOS INTEGER)ETYTERNAL;

CECLARE ACTIVESBIPF STROJCITRE(TRACKSNR 4ORD,X$POSIT INTEGZER,

Y$POSIT INTEGER,ITME WORD)EXTERNAL;

CECLARE SENS$NUWL INTESER EXTERNAL;
CECLARE (YSTGT,ISTGT)INPEGER EXTERNALS
CECLARE TYvEL #4ORD EXTERNAL;

/% INTEENAL DECLARATIONS */

DECLARE (N,J,TFOIND) #0RL;

DICLAPE Z ¢ORL;

CECLARE ¥ JORD INITIAL(2);

LESLARE ™ JORD INITIAL(3);:

O0ESLAPE (TPUZ,PALSE)WCRD INITIAL(OFFS,20H);

CECLARE ICPOS(6)BITE DATA( “ICPIS%’)

CESLARE ACRTZ(S)EYTE CATA{ “ACBUF%’)
ICLAPE I[TBCP(S)RYTE DalTa( “IDBUPE”)

CECLASE T4BaC(S)BYTE CATA( "PARACY”)

TZCLARE (SENSOR,YTAR,YTAR)INIEGZER;

CICLARZ THME 4CRD;

DECLAZE MSG1(*)EBYTE INITIAL(ENTERTING CORRELATIONE )

LECLARE »S32(*)BYTE INITIAL(°LEAVING CORRELATIONE®);

s ws wo we

/* SXTERNAL PROCEDURES #/

¢* THE ALVANCE MOTIJLE ADVANCES THE VALJE OF EZVCSIDS$PAZM. */

ADVANCE: PROCEDORE(EVCSIDSPARM) EXTERNAL;
DECLARE EYCSID$PARM POINTER;
END ADVANCES

THZ AJAIT wWOLJLE #ILL BLOCK TRE CALLINS PROSAAM FROM
EYECUTION INTIL EVCSIDSPARM=EVCSVALSPARM. */

AWAIT: PROCEDURE(AVCSICSPARM,IVCSVALSPARM)EKTERNAL;
DECLARE EVCSIDSPARM POINTER;
CECLARL EVCSVALSPARM JORD:
IND AdALT;

THE YMATCE “OIOLE JETERVINES WHETHLR THE INCOMING TARGET’S
X PJISITICY COPRELATES 4IPH ANT PUTURE X P0SITICN3 JF TRACKS

TEAT ARE ALREAZY IN THE TRACESTAZLE. */

-

IMSTCH: PRICETTRI(TAYLESPTR,XTAR . N)4ORD SYTEANALS

233
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VA

VA

/®

DICLAFE TaRLIsPTE 23
TIJLARE (TAP INTDESERS
DECLAPE 4 £0®D3

INLD TMADCES

THEL TMATCH WOLJLE COvPARFS IHI ¥ FUTJRE POSITION 2P I5Z TRACK
SIUNI IN YVATCH wOQUTLE ) THE INCIOMIANG DPARSET'S ¥ POS;7ION
AND LITZR¥INES IF THEREZ IS5 A CORRELATION, Rt
tvalld: PPICSDURE(FUTUPREY,YTAR)JORC EXTERYAL}

CICLAPZ FJTUREY INTEGER;

QECLAPE YTAE INTIGERS

INC YMATCHS

JEZ TA3LE wQIULE FILLS THE DRCXSTARLZ JITY TRACT 4OM3ER,
¥ PISITION, T POSITION, AND TIME O7 ALL NEW TRACKS. =/

JA3LI: PROCEIURE(™,XIAR,ITAR,T)ZXTERNAL;
CECLARE M JORL; -
TESLARE (YTAR,YTAR)INDEGERS
JZJLARE T #0RD;
END TATLE;

PHE ZUTF ¥ILJLE UPLAPES TIHE ACTIVES2UFF #4IId TRACK NUMBER,
T PISITION, T POSITION, AND TIvE 27 ALL OLD TRACKS. ®/

977F: PROCETLURE(TN,XPAR, T24R,T)EXTERANALS
CECLARE (IN,T)JORD;
CECLARE (XTAR,ITAR)INTEGER;
END SUFP;

TEE #RITE MOLOLE IS USED TJ PRINT JUT “ESSAGES. */

ts

48123: PRICEDURE(PTR)EXITANALS

DECLARE PTR POINTER;
IMND WRITE;

/%  MAIN PPJGRAM ¥/

tJ I=1 70 1zge@ec:

CALL 4RITE(AMS31);
CALL AWAIT(QICPOS,.Z)j

SENSOR=SENSSNIML;

XTAP=XSTGT;

YTAR=TS$TITS '
TME=TYVE]L;}

CALL ASVANCE(Q1DRUT);

CALL AWAID(ITABAC,4)3

YTOCND=IALSE;

M

N=d;
20 MEILE J¢25 AND YTOUNDwzpLSE;

2 (MATCH(ITRACKSTA3LE,XTAR,N)}
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1T g«2f T
N
TIOUNC=IMAICI(TRIASTSTAILI(S [ TSFIPOS,TTAY

I
CALL BUFF{T2AS(STAILZ(J), TRACKSHNR,TTAR,YTAR,TYE
ENTS
LLSE
N=J+1}
ENTS

SALL TARLE(M,XTAR,YTAR,IvE}S

“xv+1}
END:
CALL ADVANCE(JACBUF);

NaW+l;
CALL #RITE(3IMS32);

END CORRELATIING /* END OF MOLULE %/
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CZCLARE 3T7 LITERALLY “¢187,
u«.$.AEL SPTE P"IVTEF

ELIvIT LITERALLY “28&%°
1"‘5?'J°3AT (5) BYIS DA“A L7IPDATR ),
JTALY 1S) BYTE JATA (°0TRDTY )Y,
azbuf (3, byt2 iata ('a:‘:u.'z’).
tapaz (3] Syta fata {“tadazi’},
« 430 Lattial (3),

1 wori i{attial (43},

antry_3 laosel cuolic,

o asrdi Latstal (13

LECLARE BUFF (4) STROCIJ3E (TRACK$NR AORD, X$POSIT INTEGER,
¥$2JSIT INTEGER, TIME INTEGER, CSE INTEGER,
SPL INIZ3ER, FLAG BITE);

CECLA®E JCTPUTSTARLE STRUCTURE (TRACKSNR #IRD, X$POSIT
INTEGER, YSPOSIT INTEGER, TIME INTEGER,

CSZ INTESER, 3IPD INTEZSER, PLAG BYTE)

EYTERNALS

dRITE: PRICELIRE (PTR) EXTERNAL;
CECLARE PTR POINTERS
ENL;

ADVANCI: PP0CSCURE (EVC$ID$PARM) EXTERNALS
CECLARE EVCSIDSPARM POINTER;
ENL ALVANCES

AJAKT: PROCEDURE (EVCSIDSPARM, SVCSVALSPAR“) EXTZRNAL;
CECLARE ZVCSILSPARM POINTER,
IVCSYALSPA®M 402D

A L dPI"‘ (3(’3EGIN TEST OF DISPBLY 3 )i

/% INITIALIZE */

BJFF(1).TRACESNR = 15
B8J7F(1).XSPOSIT = 531§
3JFF(1).TSPOSIT = 108545
BCZF(1).TIME = 134}
807F(1).CSE = 240;
BJYF(1).5PL = 2435}
3CFF(1).FLAG = SET}

BUTF(Z).TRACESNR = 133
BUFF(3).X4POSIT = 21235
BUFF(3).7SPOSIT = 24133
BIFT(2).TIME = 2455
97FF(2).0SE = 1383
3UPF(3).32D = 12485
BUTI(2).ILAG = SETS
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e

2J ealla2 ¢l

2311 awalt (sazHuf, w)i
4 = d4 = 13

sall write

SALL AWAIT (232T8DY, I)3

CUTPUTSIABLE. PRACTSNP = 3UFF(J).IRACTSNRS
2JTPGTSTARLE.YSPOSIT = 3TFT(J).YSPOSIT
25TPCTSPABLE.TSPOSIT = BUPF(J).TSPOSITS
JOTECTSTABLE.JIVE = BUTE(J).TIMES
2JTPJTSTAZLE.CSE = BIFF(J).C
QUTPUTSTABLE.3PD = BOFF!J).S
JUTPITSIAELE.TLAG = 2OFF(J).
1 =1 + 15

Sall #9ITEZ(\ “3UFFER FILLED. ADVANCING DISPLAY.Z7));

CALL ADVANCE (30PDAD);

D3
Enp TBSTS . o L
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™
-~

: IOy

SCYANCI: PPOCESUREI (EVCSIDSPAPV) EXTERNSLS
CZILARE EVCSIZSPaARM POINTERS

INDS

AgAIT: PAOCEDURE (E2UCSIZSPAAM, TVCSVALSPAZM) EYTERNALS
~ 2ZCLART ZVCSITSPARM POIMER,

ETCSVALSPAEM #ORST.

INDY

§9ITE: 2P0CEDCRE (PTP) EXTERNAL;
CECLARE PTR POINTERS
INDS

CONVERTSTABLE: ®9CCZDURE (TABLESPTR) POINTER ZXTEANALS
[ECLARZ TABLEISPTR POINTERS
gNDj

JECLARE I WOPRD INITIAL (1),

PTR POINTER,

QJTSTABLISPT™R POINTEP,

SIT LITERALLY ‘21%°,

AESED LITTRALLY ‘2287,

SELIMITER LITZRALLY “28H°;
13z1areJPLAT (5) BITE IAIA (“JPCATY’),
21927 (5 27T DATA (°OTeDYEC),

fo, &) BYTES

TICLARL JUTPUTST43LE STRISIJAE (TRACXSNR #4ORI, X$POSIT INTEGER,
Y$PISIT INTEGER, TIME INTZISER, CSE INTEGER,
SPI INTEGER, FLAG 3ITE) EXTERNALS

JECIA®T LOCSRBYUIT STRUCTUPE (TRACKSNR #ORL, XY$SPOSIT INTEGER,
T$POSIT INTZZER, TIE INTESER, CSE INTEGER,
SPD INTEGER, FLAG BITE);

ODFCLARE (OCTSTABLE PASED OUTSTABLESPTR) (2%5) STROUCTURE (TRESNR
(12) 5YT3, X$2 (12) 3TTE,

fs? (12} ®YTE, T (19) BYTE, CSE (13) ®YTE, SPD

(12) °YTE, LELIm BYTE);

CALL #PITZ (J( INTERING DISPLAT.X'));

TC ealle 313
SALL a#4AIT (302DaT, IV
CALL #RITE(I("ENTERING SISPLAY LJOP.%%)):

=1 « 13
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820517 = OJTPU”$T&-LL v$PISI T
LCC$3U F.YSPAIIT = “J“Pd's"&BLE 7805ITH
TIME = JQUTPOTSIABLE,.TIME?

.C8E = 3dT°JT$AAEL:.uS£o
LOCS“U:P S°D = JUUYPUTSTABLE.3PD;
LOCSBTTF . TLAG = QUTPUTSIARLE.TLAGS

¢ CONVEIRT TaTA TN ASCII FOR JITPIT. =*/

cutstadlasptr = tcnvartstabla {(2locsruf?);

/® ARITE JATA TN CONSOLE. */

CULL #RITE (Q(“TRACY_NR Y _POSIT Y _PosiT

i0 J = 3 te 25

g sutstanle(J).delin = i2liniter
t121 call write (Qout$tadle(y));
anij
SALL ACZVANCE (30TRLY);
ENZS
ENS JISPLAYS
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EXAMPLE #5 OUTPUT

Entering IDPOSIT LOOP.
ENTERING AWAIT
ENTERING CORRELATION
ENTER ING AWAILIT
BBGIN TEST OF DISPLAY.
ENTERING AWAIT
ENTERING DISPLAY.
ENTERING AWAIT
Entering [DLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE(IDSPOSIT) .

ENTERING ADV ANCE

Calling bearing_analizer.

Calling target_posit.

ENTERING AWAIT

ENTERING ADV ANCE
Entering [DPOSIT LOOP.
ENTERING AWAIT

ENTERING ADV ANCE

ENTERING AWAIT

ENTERING ADV ANCE

LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAILT

Extracting data from a

ENTERING ADV ANCE

ENTER ING AWAIT

buffer shared with CORRELA TE.

BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADV ANCE
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ENTERING AWAIT
ENTERING DISPLAY LOOP.

TRACK_NR X_POSIT Y _POSIT TIME COURSE
00 231.8 678.9 0067 240
o1 443.1 444.4 0175 240

ENTERING ADV ANCE

ENTERING AWAIT

Entering [DLE PROCESS.
Eatering IDLE PROCESS.
CALL ADVANCE(IDSPOSIT).
ENTERING ADV ANCE

Calling bearing_analizer.
Calling target_posit.

ENTERING AWAIT

ENTERING ADV ANCE
Entering IDPOSIT LOOP.
ENTERING AWAIT

ENTERING AD VANCE

ENTERING AWAILIT

ENTERING AD VY ANCE

LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA

ENTERING ADV ANCE

ENTER ING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.
ENTERING ADV ANCE

ENTERING AWAIT
ENTERING DISPLAY LOOP.

TRACK_NR X _POSIT Y_POSIT TIME COURSE
00 231.8 678.9 0067 240
01 443.1 444.4 0107 240

ENTERING ADV ANCE

261

C e nemm e et

SPEED
0345
0345

TE.

SPEED
0345
0345




A —— e ————— o e

ENTERING AWAIT
Entering IDLE PROCESS.
Entering [DLE PROCESS.
Entering IDLE PROCESS.
EnterinCALL ADVANCE(IDSPOSIT).
ENTERING ADV ANCE

Calling bearing_analizer.
Calling target _posit.

ENTERING AWAIT

ENTERING ADV ANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT

ENTERING ADV ANCE

ENTERING AWAIT

ENTERING ADV ANCE

LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA
ENTERING ADV ANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADV ANCE

ENTERING AWAIT

ENTERING DISPLAY LOOP.

TRACK NR X_POSIT Y_POSIT TIME COURSE
00 231.38 678.9 0067 240
ot 443.1 444.4 o107 240
02 443.1 144.4 0006 240

ENTERING ADV ANCE

ENTERING AWAIT

Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE( IDSPOSIT).
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ENTERING ADV ANC E

Calling bearing_analizer.
Calling target_posit.

ENTERING AWAIT

ENTERING ADV ANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT
ENTERING AD V ANCE
ENTERING AWAIT

ENTERING ADV ANCE

LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA

ENTERING ADV ANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.
ENTERING ADV ANCE

ENTERING AWAIT

ENTERING DISPLAY LOOP.

TRACK_NR X_POSIT Y_POSIT TIME COURSE
00 231.8 678.9 0067 240
01 443.1 444.4 oto? 240
02 443.1 444 .4 0006 240
03 333.9 335.2 0175 240

ENTERING ADV ANCE

ENTERING AWAIT

Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE(IDSPOSIT).

ENTERING ADV ANCE

Calling bearing analizer.
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ENTERING

Calling target_ﬁosit.

AWAILIT

! ENTERING ADV ANCE

ENTERING
. ENTERING
ENTERING
>l ENTERING

ENTERING

ENTERING
TRACK_NR
00
01
02
03
L 04

ENTERING

ENTERING

Entering
Entering
Eatering
Entering
Entering

| Entering IDPOSIT LOOP.

AWAIT

ENTERING ADV ANCE

AWAIT

LEAVING CORRELATION
: ENTERING CORRELATION

ENTERING ADV ANCE

AWAIT

ENTERING ADV ANCE

AWAIT

ENTERING ADV ANCE

AWAIT
DISPLAY LOOP.
X_POSIT Y_POSIT
231.8 678.9
443.1 444. 4
443.1 444.4
333.9 335.2
443.1 444.4

ADVANCE

AWAILIT

IDLE PROCESS.
IDLE FROCESS.
IDLE PROCESS.
IDLE PROCESS.
IDLE PROCESS.

Y

¢

[}

BUFFER FILLED. ADVANCING DISPLAY.

TIME
0067
0107
0006
0175
0242
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EXAMPLE #6

This is the last and more powerfull example. Last
because no time is left for more testing of the operating
system. Powerfull because PROCOl is loaded to one physical
processor and PROCO2 is another physical processor. These
two interactive processes use the synchronization and
communication mechanism and also the hardware interrupt
structure as it was configured to provide inter-real
processor communication (to support the preemptive scheduling).
Furthermore in this example only the ITC level is used to
demonstrate the verifiable "loop free" structure of the
operating system (the TC level is not linked with the
operating ystem in this specific example).

These two processes are initialized as ITC processes, in
the same way as they initialized the MMGT and IDLE process.
For their interactions, the inter-virtual processor
synchronization mechanism is used.

The address space descriptor (the base of the stack)} for
the IDLE process is 5000, for the MMGT process is 5500, for
the first process is 6000 and finally for the second process
is 7000. Four VP's are used per real processor,

The input source code for these two processes is under

the header EXAMPLE #6 INPUT.

265 2

Lier b

TN e AL AR e < K IS TR NI Pt i .,




Figure 57 illustrates some more output messages incorporated

in new modules used for this current demonstration of the
operating system (which were not included in Figure 55).

The output to the printer is included under the header
EXAMPLE #6 OUTPUT #l1 for the first mocrocomputer and
EXAMPLE #6 OUTPUT#2 for the second one.

It can be seen from OUTPUT #2 that when the PROC#2 is
waiting the occurrence of the event FLDES (to reach a
speciiied value) because no other process is located on the
physical processor, it starts executing the IDLE process
(it outputs repeatedly the message ENTERING UPDATECOUNTER).
When this specific event reaches the necessary value PROC#1
signals to PROC#2 (using the ADVANCE operation) the
occurrence of this event. Since PROC#2 is loaded on another
physical processor, the hardware interrupt structure is used
to awaken this process (in OUTPUT #1 after the message
ITCSADVANCE there is the message ENTERING HARDWARESINT).
After receiving this signal, the physical processor exits
the IDLE process and continues on the previous task (PROC#2)
and so on.

To ensure in this example that the hardware interrupt
mechanism will be invoked, a different delay is used in these

two processes.
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LEVEL MODULE OUTPUT MESSAGE
ITCSINIT ENTERING ITCSINIT
KERNELSINIT ENTERING KERNELSINIT
ITCSAWAIT ENTERING ITCSAWAIT
ITCSLOCATESEVC ENTERING ITCSLOCATESEVC
ITCSADVANCE ENTERING ITCSADVANCE
GETS$COUNTER ENTERING GETCOUNTER
UPDATESCOUNTER ENTERING UPDATECOUNTER
HARDWARESINT ENTERING HARDWARESINT

FIGURE 57. MORE OUTPUT MESSAGES
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A

EXAMPLE #6 INPUT

A Tilz 930321.58¢ 18 wey */

$35P2¢MJCULE: G0

TESLAPE  (I,7) IITES ,
3iTLasz  JF LITERALLY ‘2997,
LT LITERALLY “2AE”;

LEZLARZ £ #J2L5

°3 3U32 3YIT DATA(33)}
FE TLDES BYTE JATA(44)}

DECLARE

v331(%) ®YTE INITIAL (°PROC#1. INITIAL ENTIRY INTC CLYTTER :u?P‘fDSION
v352(#) STTT INITIAL (°PRIC¥1., JAIT FOR LATA READY

w333(*) 3Y™T INITIAL (“PROC#1. PERFOPYING CLUTIZIR SUPPEE3ISION: IRAME # ').
v33a(*) 2TTE INITIAL (°PROC#1. AZVANCE FILTER DESISN EVENT COUNT N

ITosA¥ALTL: P9°CEDURE(ZVCSID,AWAITEDSVALUE) EXTERNALS
TESLA2EZ ZVCSIT BITE,
AJAITEDSVALJZ #ORD;
ENDS

IT2S$AIVANCE: PROCEDJRE(ZVCSIC) EXTERNALS
SECLAPE EZYCSID 3TTE;

JITSCEAR: ?ROCErURE(CHAR):
JECLAPE CHAP 3TTE
20 #EILE (IV“JT(JDA“) AND 21H) = @3 END;
JUTPUT(LIBH) = CHAR;

IND§

SUTSHEY: POQCEDURE(?)S
TSCLARE 2 BITE;
DECLAPE ASCII(®) BYPY DATA (“d123455785ABCDEF’);
SALL J0TSCHAF(ASCII(SHER(B,4) ANT 254))3
SALL 2J7sCRAR(ASCII(B AND QF¥));
IND}

I =2

3z =277 4
CALL OUTscﬂAR(“Sal(Z))'
END
:ALL JJTSCRAR(CR) G
SALL JUTSCHAR(LF);

23 HHILE (1 <= @TFH)J
I3 Z = 3 TO 4%;
BALL QUTSCHAR(MS32(2))}
END}
CALL JJTSCRAP(CR);
SALL JUTSCRAP(LT);
SALL ITCSAMAITLI(CSTPP,I)!

el + 13 /% {asssuss= 2/
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2

YT =20 a7y

JALL JUTSCHAR(M™SII(Z))3

INTS

CALL JUTSEEX(I);

JALL JJTSCEAR(CR);

CALL JUTSCHAP(LF';

23 8 = 2 70 12¢es
ALl TIvE(22¢)S

IND;
bl BRI B¢ IS H
TALL JJTSCEAR(MI34(2) )
N3
SALL 3UTSCHAP(CY®
SALL JUTSCHAR(LE

.
1
.
'

SALL ITC$ADVANCE(FLDES);
INLS /% #HILE &/

/¥ MCDULE ¥/
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/= TILE °80C22.5%C 18 MY #y/
ALLY 'Zfﬂ'.

ToLILARE CSUPP RYTE LATA(33)3
CECLAPE TUZES PYTE DATA(44):

LICLARE
“331 (%) BYTEZ INITIAL (°?20C#2. INITIAL ENIRY INTO PILTER DESIGN Vo
v532(®) EYTE INITIAL (’PROC*2. #AIT FOR DATA READY Y.
4333(%) 37°E INITIAL (’2P2Cs#2. PERPORMING PILTZR DESISN ON PRAME # °),
v354(®) BYTE INITIAL | PROC#Z. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT ‘i

ITISAUAITL: PEDCEDJRE(S#CSID.AJAITED$VALUE) EXTERNAL;
CECLARE EVCSID 3BYTE,
AJAITEDSVALJE #ORL}
=ND3

TSACVANCE: PROCEDURE(EVCSID) EYTERNAL;
CECLARE ZVCSIT BYIE}
INDS

SUTSCEAR: PROCELURE(CHAR):;
PECLARE CHAR BYTE;
20 4HILZ (INPUT(ODAX®) AND 21H) = 2; END;

JUT$HEX: PROCIDURE(B);
SECLAFE 3 BYTE;S
CZCLARE ASCII(=*) 3ITE L
CALL 20UTsCHAR(ASCII(SHR
CALL JUTSCHAR{ASCII(D a
ENES

APA (“2123455785A3CTEF");
(B,4) AND oFH));
ND 27H));

1= 2;
202 =0 10 45
CALL DUTS$CHAR(MS31(Z));
IND;
CALL JUTSCEAR(CR):
JALL JUTSCHAR(LE);
30 WEILE (I <= 2PFY);
10z = 2 T0 453
CALL OUTSCEAR(YS32(Z));
END:
34LL DITSCHAR(CR);
SALL 3GTSCHAR(LF);
IALL ITCSAAITL(TLDES,I);

IL=1+1;
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INDS

02 = ¢ 1Y a3
JALL DJTSCHAR(MS32(2));
35IL sgrsEzn(D):
SALL CUTsCEAR(CR);
SALL JUTSCHAR(LF);

2 =2 10 1003
CALL TIME(252);
i

227 =2 70 45;
ZALL JUTSCHAR(%e34(2))
P H

CALL JUTSCEAP(C
SALL JUTSCHAR(LF

SALL ITCSADVANCE(CSUPP);

ENL /7% JEILE ®/

/¥403CLE */
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EXAMPLE #6

ENTERING ITCSINIT
ENTERING KERNELSINIT
ENTERING GETWORK
SET VP TO RUNNING: VP
SELECTEDSDER
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID
ENTERING I TC $ AWA
ENTERING ITCSRETSVP
RUNNINGSVPSID
ENTERING ITC$LOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP
SELECTEDSDER
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID =
PROC#1.
PROC#1. WAIT FOR DATA READY
ENTERING I TC$SAWAIT
ENTERING ITCSRETSVP
RUNNINGSVPSID =
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP =
SELECTEDSDER =
PROC#1. PERFORMING CLUTTER
PROC#1.
ENTERING I TC$ADVAN
ENTERING ITCSRETSVP
RUNNINGSVPSID
ENTERING ITCSLOCATESEVC

ENTERING HARDWAR
ENTERING GETWORK
SET VP TO RUNNING: VP =
SELECTEDSDBR =
PROC#1. WAIT FOR DATA READY

Es

ENTERING I TC $ AWAILIT

ENTERING ITCSRETSVP
RUNNINGSVPSID =

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP =
SELECTEDSDER =

OUTPUT .1

00

0550

00

00

01

0600

01

INITIAL ENTRY INTO CLUTTER SUPPRESSION

01

01
0600
SUPPRESSION: FRAME # 01

ADVANCE FILTER DESIGN EVENTCOUNT

CE

a1

INT

01
0600

01

01
0600

PROC#1. PERFORMING CLUTTER SUPPRESSION: FRAME # 02
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING I TC $ ADVANCE
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ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC

ENTERING HARDWARE S INT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01
SELECTEDSDBR = 0600
PROC#1. WAIT FOR DATA READY

ENTERING I TC $ AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01
SELECTEDSDER = 0600
PROC#1., PERFORMING CLUTTER SUPPRESSION: FRAME ¢ 03
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING I TC $ ADV ANCE

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC

ENTERING HARDWARESINT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01
SELECTEDSDBR = 0600
PROC#1. WAIT FOR DATA READY

ENTERING [ TC $AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01
SELECTEDSDBR = 0600 '
PROC#1. PERFORMING CLUTTER SUPPRESSION: FRAME » 04
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING I TC $ ADVANCE

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC

ENTERING HARDWARE SINT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01
SELECTEDSDBR = 0600
PROC#1. WAIT FOR DATA READY

ENTERING [ TC S AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01
SELECTEDSDBR = 0600
PROC#1. PERFORMING CLUTTER SUPPRESSION: FRAME ¢ {5
PROC#1. ADVANCE FILTER DESIGN EVENTCOUNT
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EXAMPLE #6 OUTPUT #2

ENTERING ITCSINIT

ENTERING XKERNELSINIT

ENTERING GETWORK

SET VP TO RUNNING: VP = 04
SELECTEDSDBR = 0550

ENTERING UNLOCKVPM

ENTERING CHECKPREEMPT

ENTERING [TCSRETSVP
RUNNINGSVPSID = 04

ENTERING I TC $ AWATIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 04

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP = 05

SELECTEDSDBR = 0700

ENTERING UNLOCKVPM

ENTERING CHECKPREEMPT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05

PROC#2. INITIAL ENTRY INTO FILTER DESIGN

PROC#2. WAIT FOR DATA READY

ENTERING I TC S AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 0S5
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 05
SELECTEDSDEBR = 0700
PROC#2. PERFORMING FILTER DESIGN ON FRAME # 01
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING 1 TC S ADVANCE

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05

ENTERING ITCSLOCATESEVC

ENTERING CETWORK

SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700

PROC#2Z. WAIT FOR DATA READY

ENTERING I TC S AWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05
ENTERING ITCSLOCATESEVC
ENTERING GETWORX
SELBECTEDSDBR = 0500
ENTERING UNLOCKVPM
ENTER ING CHECKXPRERMPT
ENTERING [TCSRETSVP
RUNNINGSVPSID = 07
ENTERING GETCOUNTER
ENTERING UPDATECOUNTER
ENTER ING UPDATECOUNTER
ENTERING UPDATECOQUNTER

ENTERING UPDATECCUNTER
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ENTERING UPDATECOUNTER
ENTER ING UPDATECOUNTER ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07

SET VP TO READY: VP = 07
ENTER ING GETWORK
SET VP TO RUNNING: VP = 05

SELECTEDSDBR 0700

PROC#2. PERFORMING FILTER DESIGN ON FRAME ¢ 02
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ! TC $ ADVANCE

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700

PRCC#2. WAIT FOR DATA READY

ENTERING I TC $ AWAIT

ENTERING [TCSRETSVP
RUNNINGSVPSID = 05
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SELECTEDSDBR = 0500
ENTER ING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETIVP
RUNNINGSVPSID = 07

ENTERING UPDATECOUNTER
ENTER ING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTER ING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07
SET VP TO READY: VP = 07
ENTERING GETWORK
SET VP TO RUNNING: VP = 05
SELECTEDSDBR » 0700
PROC#2. PERFORMING FILTER DESIGN ON FRAME # 03
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING I TCSADVANCE

ENTERING [TCSRETSVP
RUNNINGSVPSID = 05

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP = 05
SELECTEDSDER = 0700

PROC#2. WAIT FOR DATA READY

ENTERING I TCSAWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05

ENTERING TTCSLOCATESEVC
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ENTERING GETWORK
SELECTEDSDER = 0500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTER ING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDAENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING [TCSRETSVP
RUNNINGSVPSID = 07
SET VP TO READY: VP = 07
ENTERING GETWORK
SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700
PROC#2. PERFORMING FILTER DESIGN ON FRAME # 04
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING I TC $ ADV ANCE

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700

PROC#2. WAIT FOR DATA READY

ENTERING [ TC SAWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05
ENTERING ITCSLOCATESEVC
ENTER ING GETWORK
SELECTEDSDBR = 0500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07
T
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTER ING UPDATECOUNTER
ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07
SET VP TO READY: VP =2 07
ENTERING GETWORK
SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700
PROC#2. PERFORMING FILTER DESIGN ON FRAME # 0§
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITCSADVANCE
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ENTERING ITCSRETSVP
RUNNINGSVPSID = 05

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700

PROC#2. WAIT FOR DATA READY

ENTERING [ TC $ AWAILIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SELECTEDSDBR = (0500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTERENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07
SET VP TO READY: VP = 07
ENTERING GETWORK
SET VP TO RUNNING: VP s 0§
SELECTEDSDBR = 0700
PROC#2. PERFORMING FILTER DESIGN ON FRAME ¢ 06
PROC#2. ADVANCE CLUTTER SUP:RESSION EVENTCOUNT

ENTERING I TCS$SADVANCE

ENTERING [TCSRETSVP
RUNNINGSVPSID = 05

ENTERING ITCSLOCATESEVC

ENTERING GETWORK

SET VP TO RUNNING: VP = 05
SELECTEDSDBR = 0700

PROC#2. WAIT FOR DATA READY

ENTERIN I TCSAWAIT

ENTERING ITCSRETSVP
RUNNINGSVPSID = 05
ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SELECTEDSDBR = 0500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP
RUNNINGSVPSID = 07

ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER

ENTERING UPDATECOUNTER
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ENTER ING
ENTER ING
ENTER ING
ENTER ING
ENTERING
ENTER ING
ENTER ING
ENTER ING

UPDATECOUNTER
UPDATECOUNTER
UPDATECOUNTER
UPDATECOUNTER
UPDATECOUNTER
UPDATECOUNTER
UPDATECOUNTER
UPDATECCUNTER
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